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About me 

 IBM Java CTO, responsible for IBM Java, JavaScript and “other” runtimes 

 25 years experience developing virtual machines, runtimes, tools 

 Developer of J9, IBM's high performance production JVM 

 One of many creators of Eclipse, currently Tools PMC lead 

 Smalltalk still the love of my life 

 

 john_duimovich@ca.ibm.com 

 http://duimovich.blogspot.com 
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Abstract 

 “The next generation of Java Virtual Machines"  
 
Abstract: A virtual machine is like your mom. Keeps you safe, protects you from the 
complex world of operating systems, sharp objects like pointers, teaches you right from 
wrong,  prevents you from doing dangerous activities and cleans up after you. These 
are all good things, but eventually, there is a time to do things that are not quite mom 
approved.   
 
Sorry mom, I grew up to be a VM implementer 
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Agenda 

 The IBM Java Virtual Machine 
– Technical overview 

 Technical Challenges   
– HW evolution   

• Packed Objects and friends 
– Language Evolution  

• Multi-tenancy, Compatability 
– Polyglot ? 

 Questions 
– or directions to the Primary Bar Location 
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The J9 Virtual Machine 

 IBM’s strategic virtual machine 

– Designed from the ground up by IBM 

– Focused on high performance , high reliability and serviceability 

– Scales from embedded and handheld devices to large SMPs to mainframes 

– Highly configurable with pluggable interfaces for alternative implementations of GC, JIT 

 Composed of several key components 

– Reconfigurable,  portable virtual machine framework and interpreter called “J9” 

– Type accurate garbage collection frameworks (Modron, Tarok, Metronome)  

– Highly optimizing just-in-time (JIT) compiler “Testarossa”  

– Integrated RAS features to enhance problem determination  

– Unique Features - SharedClasses, Dynamic AOT 

5 
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SE 7 

Operating system 

Native 
applications 

Java application code 

OS-specific calls 

Virtual machine 

SE 6 

Garbage collector 

Interpreter 

Exception handler 

Class loader 

Pluggable components 
that dynamically load 
into the virtual machine 

Thread model 

JVM Profiler 

Debugger 

Realtime Tools 

Port Library (file IO, sockets, memory allocation) 

Uses 1 of many Java 
platform configurations 

JCL natives 

JNI 

Calls to 
C 
libraries 

CDC 

MIDP 

Java calls 

JNI, INL, Fastcall 

TR JIT 

CLDC 
 

VM 
Interface 

Zip, fdlibm 

J9 Architecture 

Java 
VM 
Classes 
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Testarossa: Code optimizations are common across dynamic/static compilers 

7 7 
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IR Generators 
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Time 
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Loop Versioner 
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• Spend compile 

time where it makes 
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solutions and 
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• Java adapts to the 
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Java Adaptive Compilation : trade off effort and benefit 

 Methods start out running bytecode form directly 

 

 After many invocations (or via sampling) code get compiled 
at „cold‟ or „warm‟ level 
 

 Low overhead sampling thread is used to identify hot 
methods 

 

 Methods may get recompiled at „hot‟ or „scorching‟ levels 
(for more optimizations) 

 

 Transition to „scorching‟ goes through a temporary profiling 
step 

cold 

hot 

scorching 

profiling 

interpreter 

warm 

Results can be stored for future runs and shared across invocations 

Java's bytecodes are compiled as required, optimized based on runtime profiling 

• Dynamic compilation determines the target machine capabilities and app demands 

• Multiple phases, enable adaptive response to changing environment 
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Example 
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public static int total = 55; 

public static int compute(int j, int N, int[] a) { 

int k = 0; 

for (int i = 0; i < N; i++) { 

k = k + j + a[i] + (total + foo()); 

} 

return k; 

} 

public static int foo() { 

return 75; 

} 

9 

Optimization level Code Size (bytes) Compilation Time (ms) Wall clock runtime (ms) 

Cold 139 2.2 31,685 

Warm 265 4 10,078 

Hot 436 8.9 7,765 

Profiling 1,322 9 n/a 

Scorching 578 11 6,187 
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J9 Garbage Collection  

 J9 contains a set of scalable garbage collection policies (5) 

– “Modron”, “Tarok” -  GC frameworks that enables policies to be configured at runtimes 

– Fully type accurate 

– Parallel global (mark, sweep, compact) and generational collection 

– Partial concurrency at global level 

– Exploitation of OS level features (Virtual Memory, Large pages) 

– Common code base across J2SE and J2ME implementations 

– Highly configurable from command or invocation API 
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Standard Collection Policies 

 Modes of operation (-Xgcpolicy:) 
– Throughput  (Optthruput) 

• Stop the world mark/sweep/compact (MSC) collector with all stages being parallel 
– Average Pause (Optavgpause) 

•  MSC with concurrent mark and sweep phases to reduce average pause times 
– Generational Collector (Gencon) 

• Partial concurrent-mark for old-space and “semi-space” collected new area 

Parallel Copy, Tilted New Spaces, Dynamic New Space resizing 

– Large Heap Multicore (Subpool) 
• Throughput with high performance allocator for large heaps/CPU’s 
• Specialty use for large MP systems, deprecated in favour of Balanced. 

– Multi-region Large Heap (Balanced) 
• Region based collection supporting partial gc, high mobility, differentiated memory, goal based 

collections, with ROI heuristics 
• Reduces maximum pause times in very large heaps  
• Native memory aware reduces non-object heap consumption 

 Metronome 
– Realtime GC with hard realtime configurability,  max cpu utilization,  max pause, max memory 
– Hard Real-time version requires RT OS, Soft-RT on vanilla OS 
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Balanced: Segregate Memory by Differentiators 

 Gather objects with common properties 
– Locality  - sibling, child 
– Usage frequency 
– Lifetime, birthplace, resting place  
– Levels of “Read-only”ness 

•  none, R/O, mostly R/O,  HW enforced 

 Optimize based on memory characteristics 
– Sharing status of mapped pages 
– Regions grouped by memory speed 

• NUMA, Tiered memory 

– Flash, SSD, GPU exploitation 
• Swapping, compression, LRU, custom formats 

 “Results based” incremental operations 
– productive GC every cycle  
– localized garbage collect 
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Placement improves cache performance  

Allocation efficiency (Throughput) 

Reduced size working set (Reduce paging, optimize paging) 

IaaS optimization and sharing (consolidation) 

SSD Exploitation  (memory efficiency) 

Multicore scalability (scale up) 

Very Large Heap GC with low pause times 

Soft Real-Time 
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Shared Classes Cache 

 J9 JVMs use sharing to reduce memory and startup costs  
– Ability to securely common Java class code across multiple JVM instances 
– Reduces footprint due to sharing of read-only components (Java code) 
– Reduces startup time by caching “ready to run” previously JITed code (Dynamic AOT) 
– Dynamic AOT  - reuse JIT code from multiple JVMs 
– Reduce memory use by 20%, improve startup time 10-30 % 

 Cloud use case 
–  100-500 JVMs starting up at the same time 

 

 

JVM 
JVM 

JVM 
JVM 

JVM 

Shared Classes Cache 

JVM 
JVM 

JVM 
JVM 

JVM 

JVM 
JVM 

JVM 
JVM 

JVM 

AOT – Ahead Of Time 

(JIT code saved for next JVM) 

Verified bytecodes 
JVM shared index 

“Compile once, 

run manywhere”  



© 2014 IBM Corporation 

GOTO Chicago 2014 Next Generation Virtual Machines 

Performance  

14 (Controlled measurement environment, results may vary) 

6x aggregate hardware and software improvement comparing WAS 6.1 IBM Java5 on z9 to WAS 8.5 IBM Java7 on zEC12 

HW, Java and WAS Improvements: WAS 6.1 (IBM Java 5) on z9 to WAS 8.5 (IBM Java 7) on zEC12 
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IBM Monitoring and Diagnostic Tools for Java - Health Center 
 
 

Overview 
•Lightweight live monitoring tool with very low overhead (<2%) 
•Understand how your application is behaving, diagnose potential problems with recommendations. 
•Visualize garbage collection, method profiling, class loading, lock analysis, file I/O and native memory usage  
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IBM Monitoring and Diagnostic Tools for Java - GCMV 
 
 

• Recommendations guide GC 
performance tuning 
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Cloud Based Monitoring  

 https://wait.ibm.com/ 
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Challenges 

 “Cloud”  
– virtualization,  footprint/density, runtime dynamism,  cost 

 “Big*.*” 
–  more data,  more threads, more(and less) memory, scale out, scale up 

  Compatibility  
– protect existing investment in code and tools while delivering innovation  

 HW Evolution 
– HW is evolving faster than SW can keep up (in some cases) 
– Existing HW may also not have great Java language support (PackedDecimal) 

  Security 
–   innovation required to drive simplified security 
–  VM assist to deliver multiple lines of defense 

 Plus … many more …  development efficiency,  simplicity, software lifecycle 

 

So, how can the virtual machine help solve these challenges ? 
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The wish list …  

 Solve Cloud, Big*.*, Security and retain Compatibility  

 And when you have a chance, please add  

– Runtime resource control {memory, sockets, files} scoped by {context, module} 

– Runtime capabilities use {locks, threads, finalization}  scoped by {context, modules} 

– Language extensions for new primitive types (value types) and packed data formats 

– High performance memory model primitives for improved parallelism (no unsafe) 

– High performance Foreign Function Interface(FFI) and “Structs”, a better Java Native Interface (JNI) 

– Reified generics and true lambdas  

– Large arrays, restartable exceptions, read-only objects, unsigned ints 

–  VM support for compatibility and evolution 

– … and 200 other things 
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Density - Java 

 Density improvements span multi-jvm and mult-tenancy (single JVM) delivery models 

 Cloud with metered consumption pricing driving accurate and flexible options in the JVM 

22 

 

 

min max 

Shared Classes 
 20% saving 

 Java 5+ 

 Process isolation 

 Double digit MB footprint 

Snapshots 
 Single-digit MB / tenant 

 Process isolation 

 Code changes needed 

JRE Isolates + Heap Throttle 
 Single-digit MB / tenant 

 Process isolation 

 No code changes 

JRE Isolates 
 10’s KB / tenant 

 Process isolation 

 No code changes 

JRE with Mark-up 
 1’s KB / tenant 

 Process isolation 

 Code changes needed 

1x – 2x 

10x – 20x 

100x + 

IaaS Optimization 
 Hypervisor integration AMD/AME 

 App migration 

 Workload balancer integration 

PaaS/SaaS Models 
 Programming model changes  

  Highest density, lowest cost per tenant 

 App light, right-sized deployments 
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Multitenancy 

 Application density: a measure of how many applications we can pack onto a piece of hardware 

 For many Java applications memory is the density-limiting factor, because: 
– Java heaps are big and aren't shared between JVMs 
– JIT compiled code and metadata are big and aren't shared between JVMs 
– Most JVM heuristics are tuned for maximum performance not footprint reduction  
– Shared services (GC, JIT) don't co-operate between JVMs even when on same physical server 

 Multitenancy support 'virtualizes' the JVM   
– Sharing a runtime enables maxiumum artifact sharing (classes, code) between applications 
– Isolation of the statics while sharing classes 
– Isolation of resources to ensure friendly neighbour behaviour 
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java 
1 

 proxy

java 
2 

 proxy

java 
3 

 proxy

javad 
 
 
 

JVM 
1,2,3… 
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Data Isolation in shared classes 
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 The MT JVM provides isolation contexts and each context has a separate set static variables  

 Using the @TenantScope annotation.  

 @TenantScope Semantics: Static variable values are stored per-tenant 

 Each tenant has their own LocaleSettings.defaultLocale 

 Now many tenants can share a single LocaleSettings class 

… 

LocaleSettings.setDefaultLocale( 

LocaleSettings.UK ); 

…  

Tenant1 

Tenant2 

… 

LocaleSettings.setDefaultLocale( 

LocaleSettings.USA ); 

…  
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Multitenancy : Resource Management 

 Tenants scoped resource consumption rate by policy 
– Control of CPU percentage, number of threads, heap memory, disk and Network I/O 
– Usage controlled per tenant per second 

 Controlled using : -Xlimit:<resource_name>=<min_limit>-<max_limit> 
– <min_limit>: minimum amount of the resource required to start. 
– <max_limit>: maximum amount of the resource allowed to use. 

25 

tenant 
tenant 

demands 

rate 

control 

tenant 

allocation 

tenant 
tenant 

tenant 

tenant 

tenant 

tenant 

CPU-intensive apps each doing the 

same Fibonacci calculation, but with 

different CPU quota: 60% and 30% 

java -Xmt -Xlimit:cpu=60 -jar fibonacci 

 

java -Xmt -Xlimit:cpu=30 -jar fibonacci 



© 2014 IBM Corporation 

GOTO Chicago 2014 Next Generation Virtual Machines 

26 



© 2014 IBM Corporation 

GOTO Chicago 2014 Next Generation Virtual Machines 

Hardware Transactional Memory (HTM) 

 Allow lockless interlocked execution of a block of code called a ‘transaction’ 
– Transaction: Segment of code that appears to execute ‘atomically’ to other CPUs 

• Other processors in the system will either see all-or-none of the storage up-dates of transaction 

 How it works: 
– TBEGIN instruction starts speculative execution of ‘transaction’ 
– Storage conflict is detected by hardware if another CPU writes to storage used by the transaction 
– Conflict triggers hardware to roll-back state (storage and registers) 

• transaction can be re-tried, or 
• a fall-back software path that performs locking can be used to guarantee forward progress 

– Changes made by transaction become visible to other CPUs after TEND 
 
 

Storage conflict:  
Tran A will abort 
Tran B will commit 
changes to X and Y 

TBEGIN 

… 

load Y 

load X 

… 

TEND 

CPU 0: Tran A 

X = Y = 0; 

TBEGIN 

X = 1 

store X 

Y = 1 

store Y 

TEND 

CPU 1: Tran B 

CPU 0 can only see (X=Y=0) or (X=Y=1),  
cannot see (X=1,Y=0) or (X=0,Y=1) 
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Transactional Execution: Concurrent Linked Queue 

 ~2x improved scalability of juc.ConcurrentLinkedQueue 

 Unbound Thread-Safe LinkedQueue 
– First-in-first-out (FIFO) 

• Insert elements into tail (en-queue) 
• Poll elements from head (de-queue) 

– No explicit locking required 

 Example: a multi-threaded work queue 
– Tasks are inserted into a concurrent linked queue as multiple worker threads poll work from it concurrently 

head 

node 

node 

node 

 tail 

…. 

last 

node 

En-queue 

first 

node 
De-queue 

New TX-base 

implementation 

Traditional CAS-base 

implementation 

(Controlled measurement environment, results may vary) 
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HTM Example: Transactional Lock Elision (TLE) 
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Transaction Lock Elision on HashTable.get()

Java Prototype

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

T
h

r
o

u
g

h
p

u
t
 (

o
p

s
/s

e
c
)

Threads must serialize despite only 

reading… just in-case a writer updates 

the hash 

 

read_hash(key) { 

  Wait_for_lock(); 

  read(hash, key); 

  Release_lock(); 

} 

Thr1: read_hash() 

Thr2: read_hash() 

Thr3:read_hash() 

T 

Lock elision allows readers to 

execute in parallel, and safely back-

out should a writer update hash 

 

read_hash(key) 

  TRANSACTION_BEGIN  

  read hash.lock; 

  BRNE serialize_on_hash_lock 

  read (hash, key); 

  TRANSACTION_END 

Thr1: read_hash() 

…  
Thr3: read_hash() 

T’ 
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Runtime Instrumentation in HW is coming 
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START: 

IA1 BR THERE 

 

 

HERE:  

IA10 LR 

IA11 LR 

IA12 AR 

IA13 collect GR1 

…. 

IA25 L  Sample 

…. 

 

THERE: 

IA100 …. 

ST 

… 

IA200 BR HERE 

… 

  

IA1 
IA100 

Circular  

Collection Buffer 

IA200 
IA10 

IA13 
GR1 CB head 

Event Tracing 

Just-in-time Compiler 

 

 

 

 

 

 

 

 

Profiler 

Immediate representation generator 

Optimizer 

Code generator 

Runtime 

 Low overhead profiling with hardware support 
– Instruction samples by time, count or explicit marking 

 Sample reports include hard-to-get information: 
– Event traces, e.g. taken branch trace  

– “costly” events of interest, e.g. cache miss information 

– GR value profiling 

 Enables better “self-tuning” opportunities 

Event 
Trace 

Instrumentation 
controls Instruction 

processing Pre-allocated 
storage 

1 (setup) 

2 

3 

4 
5 

6 (analyze) 

CPU 

JVM 

GC 

Bytecodes 
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Compatibility 

 Binary Compatibility has been a key strength of Java 

– Protect customer investment by “never” breaking code 

– Clean API specification ensures evolution of API within specification and TCK 

– Ridiculously old code will run unmodified 

 Supporting “eternal” binary compatibility is difficult 

– JVM complexity – old code drives special use cases in JVM, including security issues 

– Code bloat – deprecated is “just a suggestion”  and code is loaded whether it’s used or not 

 JVM and Platform support for evolution of Java language and API ? 

– It’s beginning !   
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Default methods 

 Lambda and stream operations are useful on existing collection types 
– Need a way to extend well established type structures while retaining compatibility 

 Option 1: Creating parallel hierarchy of similar structures 
– Bulky class library with constant need to juggle types 

 Option 2: Adding a new method to an existing interface 
– Binary compatible, but disenfranchises implementers 

 Option 3: Enhance language to provide default implementations in interfaces 
– Interface declarations contain code, or references to code, to run if classes do not provide an implementation 

 
– COMPATIBILITY COMPATIBILITY COMPATIBILITY COMPATIBILITY COMPATIBILITY ! 

33 

public interface Set<T> extends Collection<T> { 

default Collections.<T>setForEach { … }; 

public boolean add(E e); 

public void clear(); 

... 

public void forEach(Block<T> blk)} 
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Compatibility evolution enables innovation 
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VM Support for “breaking changes”  

 API evolution as core jvm and platform ? 

– JVM supported field and method rename / rewrite on load ? 

– Selective visibility of methods based on compile time versions ? 

– JVM assisted refactoring for complex type cases  

– Source refactoring in IDEs automatically from metadata in binaries 

 Serialization robustness  

– Class versions aware of prior versions and shapes and can provide conversions routines 

– Automatic “schema” migration via tools 

– Death to the serialVersionUID 

 Optimized deployment  

– Java instances support “strict version” mode to ensure only latest version code loads 

– Optimized instances that offer smaller, faster, efficient deployment 

– Unused components not loaded, corner cases removed, evolve better security 

• Thread.stop, Thread.suspend, Thread.resume 
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Technology to help address compatible class evolution ?  

 public class  Example  V1.0 {  
– public void a (); 
– public void b ();  
– public int  badField; 
– } 
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public class  Example  V2.0 {  
public void a (); 
public void b ();  
deprecated V1.0 public int  badField;  
public int getField() 
public void setField(int); 
} 
 

public class  Example  V3.0 {  
public void a (); 
public void b (); 
public int getField() 
public void setField(int); 
deprecated V1.0-2.0 public int  badField map(getField, setField);  
} 
 

Oops, don’t use badField 

Note: Imaginary Syntax 
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Versions to evolve class shapes 
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public class  Example  V3.0 {  
public void a (); 
public void b (); 
public int getField() 
public void setField(int); 
deprecated V1.0-2.0 public int  badField map(getField, setField);  
} 

V1.0 
client Example  

V 3.0  

V2.0 

V3.0 

Recompile 

Run, no errors – binary compatibility ok 

Compiler Warning: 
badField deprecated 

Compiler Error:  
no member named badField 

Re-write rules corrects reference 

No mapping needed 
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Use case: GPU offloading 

 GPU technology growing in importance 
– Fast, low-power, data-parallel operations 
– Analytics, data mining, data conversions 

 For Java, data transfer costs between CPU and GPU key inhibitor 
– Data marshaling costs are high, scatter / gather complexity, objects wrong shape 

 Java platform needs good support to declare intent for best performance 
– Optimal layout and control of memory needed with freedom for VM to optimize 

GPU Off-heap memory 

JVM 

Control traffic 
Memory traffic 
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Packed objects 

“Packed Objects” is an experimental language feature available on IBM Java 7 R1 technical preview form.  

 

Packed objects allow developers greater control over the memory layout of their Java objects 

 

 Why? 

✔Improve serialization and I/O of Java objects 

✔Allow direct access to “native” (off-heap) data 

✔Allow for explicit source-level representation of compact data-structures 

 

 Tech preview with customer feedback on what works and what doesn‟t so we can inform the standard via 

JCP process 

 

Benefits: 

structured data support in Java for improved footprint, enhance serialization performance, enabling fine-grained 

data management, better inter-language communication 
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Use case: distributed computing communications 

App Server 

JVM 

Database 

Node 

App Server 

JVM 

Database 

Data persistency on 
each node (DB, file 
system, etc.). 
Requires data copying 
and (de)serialization. 

Communication between nodes 
(RDMA, hyper-sockets, ORB, etc.). 
Requires data copying and 
(de)serialization. 

Using Java packed objects, 
data can be moved between 
the persistency and 
communication layers without 
being copied or (de)serialized 
onto/off the Java heap 

Node 
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Packed Objects: Heap referenced data 

42 

int y 

int x 

aPoint 

Object header 

Object field / data 

int y 

int x 

aPoint Point b 

Point a 

points 

Point c 

int y 

int x 

aPoint 

e.g. you wish to represent a sequence of points efficiently in Java 
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Packed Objects: Heap referenced data 
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int y 

int x 

aPoint 

Object header 

Object field / data 

int y 

int x 

aPoint Point b 

Point a 

points 

int y 

int x 

int y 

int x 

aPackedLine 

offset 

target 

Point c 

int y 

int x 

aPoint 

int y 

int x 

@Packed 
final class PackedPoint extends PackedObject { 
 int x; 
 int y; 
} 
 

@Packed 
final class PackedLine extends PackedObject { 
 PackedPoint a; 
 PackedPoint b; 

PackedPoint c; 
} 

aLine.a 

aLine.b 

aLine.c 
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Packed objects support for native memory 

 Java requires memory to be in Java 
“object” form to be accessed directly 

 External data needs to be read into Java 
heap format to use – conversion is 
expensive 

 Memory bloat due to copies and headers 

 Natural object representation looses data 
locality properties 

44 

 PackedObjects enables direct access to data in 
arbitrary formats without the redundant 
copying; no conversion 

 PackedObjects data can be in native memory or 
Java heap space 

data 

data 
copy 

header 

object 

array [   ] 
header 

data 
copy 

header 

data 
copy 

header 

data 
copy 

header 

data data data 

heap 

objects 

native 

memory 

packed 

array [   ] 

Native or 

heap 

memory 

Manipulate native data records from Java 
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Code snippets 

  Packed class definition 

 

 

 

 

 

  Off-heap packed allocation 

  On-heap packed allocation 

@Packed 

public final class PackedPrimitives { 

   public byte byteField; 

   public boolean booleanField 

   public double doubleField; 

} 

// allocate an on-heap ‘struct’ object 

PackedPrimitives pp = new PackedPrimitives(); 

pp.byteField = 0x20; 

pp.booleanField = true; 

pp.doubleField = 100.7; 

// allocate an off-heap ‘struct’ object and the native memory for its data 

PackedPrimitives pp = PackedObject.newNativePackedObject(PackedPrimitives.class, 0); 

// directly set fields in native memory 

pp.byteField = 0x20; 

pp.booleanField = true; 

pp.doubleField = 100.7; 

… 

// free native memory 

PackedObject.freeNativePackedObject(pp); 
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Polyglot and the virtual machinist  

 Developer ecosystem has expanded to include more than “Just Java” 
– Ruby, Python, PHP, JavaScript frequently used in many of our customer applications 
–  right tool for the job, programmer efficiency , joy, skills 

 PaaS’s  like CloudFoundry is a polyglot platform for consuming services 

 JavaScript is prevalent in most if not all customer applications 
– Multi-channel delivery of customer value drives adoption  
– Web Applications, NoSQL and JSON use a factor 
– Mobile primary driver for adoption 

 Java virtual machines have high performance modern implementations 

 
So 

 

Why has the universe not adopted the JVM as the “one true” runtime for best performance of scripting 
languages ?  

How do we best leverage this investment in Java to enable other languages ? 

In our runtimes, memory model is flexible and configurable beyond what Java can specify , our JIT is 
multi-language enabled,  and VM support layers are portable  so we are exploring what new interfaces 
the VM platform needs to support for scripting and other dynamic languages  
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MRI Ruby, CPython, PHP 
 

Pluggable languages that 
take advantage of the VM, 
without limiting Java 
semantics 
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So… 

 “Next Generation” Virtual Machines will  

 

 Enable higher and higher level of scalability and performance via better GC, JITs 

 Enable better interop with native memory, optimized layouts new data types 

 Language support for innovation with compatibility migration help 

 Speak more languages fluently 
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