
© 2014 IBM Corporation

The Next Generation of Java Virtual Machines

John Duimovich

IBM Distinguished Engineer

Java CTO

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

About me

 IBM Java CTO, responsible for IBM Java, JavaScript and “other” runtimes

 25 years experience developing virtual machines, runtimes, tools

 Developer of J9, IBM's high performance production JVM

 One of many creators of Eclipse, currently Tools PMC lead

 Smalltalk still the love of my life

 john_duimovich@ca.ibm.com

 http://duimovich.blogspot.com

2

mailto:john_duimovich@ca.ibm.com
mailto:john_duimovich@ca.ibm.comduimovich.blogspot.com
mailto:john_duimovich@ca.ibm.comduimovich.blogspot.com

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Abstract

 “The next generation of Java Virtual Machines"

Abstract: A virtual machine is like your mom. Keeps you safe, protects you from the
complex world of operating systems, sharp objects like pointers, teaches you right from
wrong, prevents you from doing dangerous activities and cleans up after you. These
are all good things, but eventually, there is a time to do things that are not quite mom
approved.

Sorry mom, I grew up to be a VM implementer

3

mailto:john_duimovich@ca.ibm.comduimovich.blogspot.com

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Agenda

 The IBM Java Virtual Machine
– Technical overview

 Technical Challenges
– HW evolution

• Packed Objects and friends
– Language Evolution

• Multi-tenancy, Compatability
– Polyglot ?

 Questions
– or directions to the Primary Bar Location

4

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

The J9 Virtual Machine

 IBM’s strategic virtual machine

– Designed from the ground up by IBM

– Focused on high performance , high reliability and serviceability

– Scales from embedded and handheld devices to large SMPs to mainframes

– Highly configurable with pluggable interfaces for alternative implementations of GC, JIT

 Composed of several key components

– Reconfigurable, portable virtual machine framework and interpreter called “J9”

– Type accurate garbage collection frameworks (Modron, Tarok, Metronome)

– Highly optimizing just-in-time (JIT) compiler “Testarossa”

– Integrated RAS features to enhance problem determination

– Unique Features - SharedClasses, Dynamic AOT

5

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

SE 7

Operating system

Native
applications

Java application code

OS-specific calls

Virtual machine

SE 6

Garbage collector

Interpreter

Exception handler

Class loader

Pluggable components
that dynamically load
into the virtual machine

Thread model

JVM Profiler

Debugger

Realtime Tools

Port Library (file IO, sockets, memory allocation)

Uses 1 of many Java
platform configurations

JCL natives

JNI

Calls to
C
libraries

CDC

MIDP

Java calls

JNI, INL, Fastcall

TR JIT

CLDC

VM
Interface

Zip, fdlibm

J9 Architecture

Java
VM
Classes

6

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Testarossa: Code optimizations are common across dynamic/static compilers

7 7

;

IR Generators

Compile

Time

Connectors

Optimizations

Block Hoisting

Inliner

Value Propagation

Block Hoisting

CSE

Loop Versioner

PRE

Escape Analysis

Redundant Monitor Elimination

Cold block Outlining

Loop Unroller

Copy Propagation

Optimal Store Placement

Simplifier

Dead Tree Removal

Switch Analyzer

Async Check Removal

cold warm hot FSD small profiling custom scorching AOT

Profiler

Code Generators

Runtime

Optimizer

• Multiple

optimization

strategies for

different code

quality compile-time

tradeoffs

• Spend compile

time where it makes

biggest difference

• Extremely flexible

solutions and

infrastructure

• Java adapts to the

latest optimizations

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

8

Java Adaptive Compilation : trade off effort and benefit

 Methods start out running bytecode form directly

 After many invocations (or via sampling) code get compiled
at „cold‟ or „warm‟ level

 Low overhead sampling thread is used to identify hot
methods

 Methods may get recompiled at „hot‟ or „scorching‟ levels
(for more optimizations)

 Transition to „scorching‟ goes through a temporary profiling
step

cold

hot

scorching

profiling

interpreter

warm

Results can be stored for future runs and shared across invocations

Java's bytecodes are compiled as required, optimized based on runtime profiling

• Dynamic compilation determines the target machine capabilities and app demands

• Multiple phases, enable adaptive response to changing environment

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Example

9

public static int total = 55;

public static int compute(int j, int N, int[] a) {

int k = 0;

for (int i = 0; i < N; i++) {

k = k + j + a[i] + (total + foo());

}

return k;

}

public static int foo() {

return 75;

}

9

Optimization level Code Size (bytes) Compilation Time (ms) Wall clock runtime (ms)

Cold 139 2.2 31,685

Warm 265 4 10,078

Hot 436 8.9 7,765

Profiling 1,322 9 n/a

Scorching 578 11 6,187

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

J9 Garbage Collection

 J9 contains a set of scalable garbage collection policies (5)

– “Modron”, “Tarok” - GC frameworks that enables policies to be configured at runtimes

– Fully type accurate

– Parallel global (mark, sweep, compact) and generational collection

– Partial concurrency at global level

– Exploitation of OS level features (Virtual Memory, Large pages)

– Common code base across J2SE and J2ME implementations

– Highly configurable from command or invocation API

10

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Standard Collection Policies

 Modes of operation (-Xgcpolicy:)
– Throughput (Optthruput)

• Stop the world mark/sweep/compact (MSC) collector with all stages being parallel
– Average Pause (Optavgpause)

• MSC with concurrent mark and sweep phases to reduce average pause times
– Generational Collector (Gencon)

• Partial concurrent-mark for old-space and “semi-space” collected new area

Parallel Copy, Tilted New Spaces, Dynamic New Space resizing

– Large Heap Multicore (Subpool)
• Throughput with high performance allocator for large heaps/CPU’s
• Specialty use for large MP systems, deprecated in favour of Balanced.

– Multi-region Large Heap (Balanced)
• Region based collection supporting partial gc, high mobility, differentiated memory, goal based

collections, with ROI heuristics
• Reduces maximum pause times in very large heaps
• Native memory aware reduces non-object heap consumption

 Metronome
– Realtime GC with hard realtime configurability, max cpu utilization, max pause, max memory
– Hard Real-time version requires RT OS, Soft-RT on vanilla OS

11

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Balanced: Segregate Memory by Differentiators

 Gather objects with common properties
– Locality - sibling, child
– Usage frequency
– Lifetime, birthplace, resting place
– Levels of “Read-only”ness

• none, R/O, mostly R/O, HW enforced

 Optimize based on memory characteristics
– Sharing status of mapped pages
– Regions grouped by memory speed

• NUMA, Tiered memory

– Flash, SSD, GPU exploitation
• Swapping, compression, LRU, custom formats

 “Results based” incremental operations
– productive GC every cycle
– localized garbage collect

12

Placement improves cache performance

Allocation efficiency (Throughput)

Reduced size working set (Reduce paging, optimize paging)

IaaS optimization and sharing (consolidation)

SSD Exploitation (memory efficiency)

Multicore scalability (scale up)

Very Large Heap GC with low pause times

Soft Real-Time

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

13

Shared Classes Cache

 J9 JVMs use sharing to reduce memory and startup costs
– Ability to securely common Java class code across multiple JVM instances
– Reduces footprint due to sharing of read-only components (Java code)
– Reduces startup time by caching “ready to run” previously JITed code (Dynamic AOT)
– Dynamic AOT - reuse JIT code from multiple JVMs
– Reduce memory use by 20%, improve startup time 10-30 %

 Cloud use case
– 100-500 JVMs starting up at the same time

JVM
JVM

JVM
JVM

JVM

Shared Classes Cache

JVM
JVM

JVM
JVM

JVM

JVM
JVM

JVM
JVM

JVM

AOT – Ahead Of Time

(JIT code saved for next JVM)

Verified bytecodes
JVM shared index

“Compile once,

run manywhere”

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Performance

14 (Controlled measurement environment, results may vary)

6x aggregate hardware and software improvement comparing WAS 6.1 IBM Java5 on z9 to WAS 8.5 IBM Java7 on zEC12

HW, Java and WAS Improvements: WAS 6.1 (IBM Java 5) on z9 to WAS 8.5 (IBM Java 7) on zEC12

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

15

IBM Monitoring and Diagnostic Tools for Java - Health Center

Overview
•Lightweight live monitoring tool with very low overhead (<2%)
•Understand how your application is behaving, diagnose potential problems with recommendations.
•Visualize garbage collection, method profiling, class loading, lock analysis, file I/O and native memory usage

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

16

IBM Monitoring and Diagnostic Tools for Java - GCMV

• Recommendations guide GC
performance tuning

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Cloud Based Monitoring

 https://wait.ibm.com/

17

https://wait.ibm.com/
https://wait.ibm.com/

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

18

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Challenges

 “Cloud”
– virtualization, footprint/density, runtime dynamism, cost

 “Big*.*”
– more data, more threads, more(and less) memory, scale out, scale up

 Compatibility
– protect existing investment in code and tools while delivering innovation

 HW Evolution
– HW is evolving faster than SW can keep up (in some cases)
– Existing HW may also not have great Java language support (PackedDecimal)

 Security
– innovation required to drive simplified security
– VM assist to deliver multiple lines of defense

 Plus … many more … development efficiency, simplicity, software lifecycle

So, how can the virtual machine help solve these challenges ?

19

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

The wish list …

 Solve Cloud, Big*.*, Security and retain Compatibility

 And when you have a chance, please add

– Runtime resource control {memory, sockets, files} scoped by {context, module}

– Runtime capabilities use {locks, threads, finalization} scoped by {context, modules}

– Language extensions for new primitive types (value types) and packed data formats

– High performance memory model primitives for improved parallelism (no unsafe)

– High performance Foreign Function Interface(FFI) and “Structs”, a better Java Native Interface (JNI)

– Reified generics and true lambdas

– Large arrays, restartable exceptions, read-only objects, unsigned ints

– VM support for compatibility and evolution

– … and 200 other things

20

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

21

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Density - Java

 Density improvements span multi-jvm and mult-tenancy (single JVM) delivery models

 Cloud with metered consumption pricing driving accurate and flexible options in the JVM

22

min max

Shared Classes
 20% saving

 Java 5+

 Process isolation

 Double digit MB footprint

Snapshots
 Single-digit MB / tenant

 Process isolation

 Code changes needed

JRE Isolates + Heap Throttle
 Single-digit MB / tenant

 Process isolation

 No code changes

JRE Isolates
 10’s KB / tenant

 Process isolation

 No code changes

JRE with Mark-up
 1’s KB / tenant

 Process isolation

 Code changes needed

1x – 2x

10x – 20x

100x +

IaaS Optimization
 Hypervisor integration AMD/AME

 App migration

 Workload balancer integration

PaaS/SaaS Models
 Programming model changes

 Highest density, lowest cost per tenant

 App light, right-sized deployments

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Multitenancy

 Application density: a measure of how many applications we can pack onto a piece of hardware

 For many Java applications memory is the density-limiting factor, because:
– Java heaps are big and aren't shared between JVMs
– JIT compiled code and metadata are big and aren't shared between JVMs
– Most JVM heuristics are tuned for maximum performance not footprint reduction
– Shared services (GC, JIT) don't co-operate between JVMs even when on same physical server

 Multitenancy support 'virtualizes' the JVM
– Sharing a runtime enables maxiumum artifact sharing (classes, code) between applications
– Isolation of the statics while sharing classes
– Isolation of resources to ensure friendly neighbour behaviour

23

java
1

 proxy

java
2

 proxy

java
3

 proxy

javad

JVM
1,2,3…

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Data Isolation in shared classes

24

 The MT JVM provides isolation contexts and each context has a separate set static variables

 Using the @TenantScope annotation.

 @TenantScope Semantics: Static variable values are stored per-tenant

 Each tenant has their own LocaleSettings.defaultLocale

 Now many tenants can share a single LocaleSettings class

…

LocaleSettings.setDefaultLocale(

LocaleSettings.UK);

…

Tenant1

Tenant2

…

LocaleSettings.setDefaultLocale(

LocaleSettings.USA);

…

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Multitenancy : Resource Management

 Tenants scoped resource consumption rate by policy
– Control of CPU percentage, number of threads, heap memory, disk and Network I/O
– Usage controlled per tenant per second

 Controlled using : -Xlimit:<resource_name>=<min_limit>-<max_limit>
– <min_limit>: minimum amount of the resource required to start.
– <max_limit>: maximum amount of the resource allowed to use.

25

tenant
tenant

demands

rate

control

tenant

allocation

tenant
tenant

tenant

tenant

tenant

tenant

CPU-intensive apps each doing the

same Fibonacci calculation, but with

different CPU quota: 60% and 30%

java -Xmt -Xlimit:cpu=60 -jar fibonacci

java -Xmt -Xlimit:cpu=30 -jar fibonacci

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

26

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Hardware Transactional Memory (HTM)

 Allow lockless interlocked execution of a block of code called a ‘transaction’
– Transaction: Segment of code that appears to execute ‘atomically’ to other CPUs

• Other processors in the system will either see all-or-none of the storage up-dates of transaction

 How it works:
– TBEGIN instruction starts speculative execution of ‘transaction’
– Storage conflict is detected by hardware if another CPU writes to storage used by the transaction
– Conflict triggers hardware to roll-back state (storage and registers)

• transaction can be re-tried, or
• a fall-back software path that performs locking can be used to guarantee forward progress

– Changes made by transaction become visible to other CPUs after TEND

Storage conflict:
Tran A will abort
Tran B will commit
changes to X and Y

TBEGIN

…

load Y

load X

…

TEND

CPU 0: Tran A

X = Y = 0;

TBEGIN

X = 1

store X

Y = 1

store Y

TEND

CPU 1: Tran B

CPU 0 can only see (X=Y=0) or (X=Y=1),
cannot see (X=1,Y=0) or (X=0,Y=1)

27

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Transactional Execution: Concurrent Linked Queue

 ~2x improved scalability of juc.ConcurrentLinkedQueue

 Unbound Thread-Safe LinkedQueue
– First-in-first-out (FIFO)

• Insert elements into tail (en-queue)
• Poll elements from head (de-queue)

– No explicit locking required

 Example: a multi-threaded work queue
– Tasks are inserted into a concurrent linked queue as multiple worker threads poll work from it concurrently

head

node

node

node

 tail

….

last

node

En-queue

first

node
De-queue

New TX-base

implementation

Traditional CAS-base

implementation

(Controlled measurement environment, results may vary)

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

HTM Example: Transactional Lock Elision (TLE)

29

Transaction Lock Elision on HashTable.get()

Java Prototype

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

T
h

r
o

u
g

h
p

u
t
 (

o
p

s
/s

e
c
)

Threads must serialize despite only

reading… just in-case a writer updates

the hash

read_hash(key) {

 Wait_for_lock();

 read(hash, key);

 Release_lock();

}

Thr1: read_hash()

Thr2: read_hash()

Thr3:read_hash()

T

Lock elision allows readers to

execute in parallel, and safely back-

out should a writer update hash

read_hash(key)

 TRANSACTION_BEGIN

 read hash.lock;

 BRNE serialize_on_hash_lock

 read (hash, key);

 TRANSACTION_END

Thr1: read_hash()

…
Thr3: read_hash()

T’

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Runtime Instrumentation in HW is coming

30

START:

IA1 BR THERE

HERE:

IA10 LR

IA11 LR

IA12 AR

IA13 collect GR1

….

IA25 L  Sample

….

THERE:

IA100 ….

ST

…

IA200 BR HERE

…

IA1
IA100

Circular

Collection Buffer

IA200
IA10

IA13
GR1 CB head

Event Tracing

Just-in-time Compiler

Profiler

Immediate representation generator

Optimizer

Code generator

Runtime

 Low overhead profiling with hardware support
– Instruction samples by time, count or explicit marking

 Sample reports include hard-to-get information:
– Event traces, e.g. taken branch trace

– “costly” events of interest, e.g. cache miss information

– GR value profiling

 Enables better “self-tuning” opportunities

Event
Trace

Instrumentation
controls Instruction

processing Pre-allocated
storage

1 (setup)

2

3

4
5

6 (analyze)

CPU

JVM

GC

Bytecodes

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

31

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Compatibility

 Binary Compatibility has been a key strength of Java

– Protect customer investment by “never” breaking code

– Clean API specification ensures evolution of API within specification and TCK

– Ridiculously old code will run unmodified

 Supporting “eternal” binary compatibility is difficult

– JVM complexity – old code drives special use cases in JVM, including security issues

– Code bloat – deprecated is “just a suggestion” and code is loaded whether it’s used or not

 JVM and Platform support for evolution of Java language and API ?

– It’s beginning !

32

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Default methods

 Lambda and stream operations are useful on existing collection types
– Need a way to extend well established type structures while retaining compatibility

 Option 1: Creating parallel hierarchy of similar structures
– Bulky class library with constant need to juggle types

 Option 2: Adding a new method to an existing interface
– Binary compatible, but disenfranchises implementers

 Option 3: Enhance language to provide default implementations in interfaces
– Interface declarations contain code, or references to code, to run if classes do not provide an implementation

– COMPATIBILITY COMPATIBILITY COMPATIBILITY COMPATIBILITY COMPATIBILITY !

33

public interface Set<T> extends Collection<T> {

default Collections.<T>setForEach { … };

public boolean add(E e);

public void clear();

...

public void forEach(Block<T> blk)}

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Compatibility evolution enables innovation

34

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

VM Support for “breaking changes”

 API evolution as core jvm and platform ?

– JVM supported field and method rename / rewrite on load ?

– Selective visibility of methods based on compile time versions ?

– JVM assisted refactoring for complex type cases

– Source refactoring in IDEs automatically from metadata in binaries

 Serialization robustness

– Class versions aware of prior versions and shapes and can provide conversions routines

– Automatic “schema” migration via tools

– Death to the serialVersionUID

 Optimized deployment

– Java instances support “strict version” mode to ensure only latest version code loads

– Optimized instances that offer smaller, faster, efficient deployment

– Unused components not loaded, corner cases removed, evolve better security

• Thread.stop, Thread.suspend, Thread.resume

35

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Technology to help address compatible class evolution ?

 public class Example V1.0 {
– public void a ();
– public void b ();
– public int badField;
– }

36

public class Example V2.0 {
public void a ();
public void b ();
deprecated V1.0 public int badField;
public int getField()
public void setField(int);
}

public class Example V3.0 {
public void a ();
public void b ();
public int getField()
public void setField(int);
deprecated V1.0-2.0 public int badField map(getField, setField);
}

Oops, don’t use badField

Note: Imaginary Syntax

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Versions to evolve class shapes

37

public class Example V3.0 {
public void a ();
public void b ();
public int getField()
public void setField(int);
deprecated V1.0-2.0 public int badField map(getField, setField);
}

V1.0
client Example

V 3.0

V2.0

V3.0

Recompile

Run, no errors – binary compatibility ok

Compiler Warning:
badField deprecated

Compiler Error:
no member named badField

Re-write rules corrects reference

No mapping needed

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

38

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Use case: GPU offloading

 GPU technology growing in importance
– Fast, low-power, data-parallel operations
– Analytics, data mining, data conversions

 For Java, data transfer costs between CPU and GPU key inhibitor
– Data marshaling costs are high, scatter / gather complexity, objects wrong shape

 Java platform needs good support to declare intent for best performance
– Optimal layout and control of memory needed with freedom for VM to optimize

GPU Off-heap memory

JVM

Control traffic
Memory traffic

39

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Packed objects

“Packed Objects” is an experimental language feature available on IBM Java 7 R1 technical preview form.

Packed objects allow developers greater control over the memory layout of their Java objects

 Why?

✔Improve serialization and I/O of Java objects

✔Allow direct access to “native” (off-heap) data

✔Allow for explicit source-level representation of compact data-structures

 Tech preview with customer feedback on what works and what doesn‟t so we can inform the standard via

JCP process

Benefits:

structured data support in Java for improved footprint, enhance serialization performance, enabling fine-grained

data management, better inter-language communication

40

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Use case: distributed computing communications

App Server

JVM

Database

Node

App Server

JVM

Database

Data persistency on
each node (DB, file
system, etc.).
Requires data copying
and (de)serialization.

Communication between nodes
(RDMA, hyper-sockets, ORB, etc.).
Requires data copying and
(de)serialization.

Using Java packed objects,
data can be moved between
the persistency and
communication layers without
being copied or (de)serialized
onto/off the Java heap

Node

41

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Packed Objects: Heap referenced data

42

int y

int x

aPoint

Object header

Object field / data

int y

int x

aPoint Point b

Point a

points

Point c

int y

int x

aPoint

e.g. you wish to represent a sequence of points efficiently in Java

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Packed Objects: Heap referenced data

43

int y

int x

aPoint

Object header

Object field / data

int y

int x

aPoint Point b

Point a

points

int y

int x

int y

int x

aPackedLine

offset

target

Point c

int y

int x

aPoint

int y

int x

@Packed
final class PackedPoint extends PackedObject {
 int x;
 int y;
}

@Packed
final class PackedLine extends PackedObject {
 PackedPoint a;
 PackedPoint b;

PackedPoint c;
}

aLine.a

aLine.b

aLine.c

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Packed objects support for native memory

 Java requires memory to be in Java
“object” form to be accessed directly

 External data needs to be read into Java
heap format to use – conversion is
expensive

 Memory bloat due to copies and headers

 Natural object representation looses data
locality properties

44

 PackedObjects enables direct access to data in
arbitrary formats without the redundant
copying; no conversion

 PackedObjects data can be in native memory or
Java heap space

data

data
copy

header

object

array []
header

data
copy

header

data
copy

header

data
copy

header

data data data

heap

objects

native

memory

packed

array []

Native or

heap

memory

Manipulate native data records from Java

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Code snippets

 Packed class definition

 Off-heap packed allocation

 On-heap packed allocation

@Packed

public final class PackedPrimitives {

 public byte byteField;

 public boolean booleanField

 public double doubleField;

}

// allocate an on-heap ‘struct’ object

PackedPrimitives pp = new PackedPrimitives();

pp.byteField = 0x20;

pp.booleanField = true;

pp.doubleField = 100.7;

// allocate an off-heap ‘struct’ object and the native memory for its data

PackedPrimitives pp = PackedObject.newNativePackedObject(PackedPrimitives.class, 0);

// directly set fields in native memory

pp.byteField = 0x20;

pp.booleanField = true;

pp.doubleField = 100.7;

…

// free native memory

PackedObject.freeNativePackedObject(pp);

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

46

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

Polyglot and the virtual machinist

 Developer ecosystem has expanded to include more than “Just Java”
– Ruby, Python, PHP, JavaScript frequently used in many of our customer applications
– right tool for the job, programmer efficiency , joy, skills

 PaaS’s like CloudFoundry is a polyglot platform for consuming services

 JavaScript is prevalent in most if not all customer applications
– Multi-channel delivery of customer value drives adoption
– Web Applications, NoSQL and JSON use a factor
– Mobile primary driver for adoption

 Java virtual machines have high performance modern implementations

So

Why has the universe not adopted the JVM as the “one true” runtime for best performance of scripting
languages ?

How do we best leverage this investment in Java to enable other languages ?

In our runtimes, memory model is flexible and configurable beyond what Java can specify , our JIT is
multi-language enabled, and VM support layers are portable so we are exploring what new interfaces
the VM platform needs to support for scripting and other dynamic languages

47

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

SE 7

Operating system

Native
applications

Java application code

OS-specific calls

Virtual machine

SE 6

Garbage collector

Interpreter

Exception handler

Class loader

Pluggable components
that dynamically load
into the virtual machine

Thread model

JVM Profiler

Debugger

Realtime Tools

Port Library (file IO, sockets, memory allocation)

JCL natives

JNI

Calls to
C
libraries

CDC

MIDP

Java calls

JNI, INL, Fastcall

JIT

CLDC

VM
Interface

Zip, fdlibm

J9 Architecture

Java
VM
Classes

48

MRI Ruby, CPython, PHP

Pluggable languages that
take advantage of the VM,
without limiting Java
semantics

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

So…

 “Next Generation” Virtual Machines will

 Enable higher and higher level of scalability and performance via better GC, JITs

 Enable better interop with native memory, optimized layouts new data types

 Language support for innovation with compatibility migration help

 Speak more languages fluently

49

© 2014 IBM Corporation

GOTO Chicago 2014 Next Generation Virtual Machines

50

