
Scala - The Simple Parts
Martin Odersky

Typesafe and EPFL

10 Years of Scala

Grown Up?

Scala’s user community is pretty large for its age group.
 ~ 100’000 developers
 ~ 200’000 subscribers to Coursera online courses.
 #13 in RedMonk Language Rankings

Many successful rollouts and happy users.

But Scala is also discussed more controversially than usual
for a language at its stage of adoption.
	

	
 	
 	
 	
 Why?

3

Controversies

Internal controversies: Different communities don’t agree
what programming in Scala should be.

External complaints:

“Scala is too academic”
“Scala has sold out to industry”

“Scala’s types are too hard”
“Scala’s types are not strict enough”

“Scala is everything and the kitchen sink”

Signs that we have not made clear enough what the
essence of programming in Scala is.

4

1-5

The Picture So Far

 Agile, with lightweight syntax

Object-Oriented Functional

 Safe and performant, with strong static tpying

= scalable

What is “Scalable”?

•  1st meaning: “Growable”
–  can be molded into new languages

by adding libraries (domain
specific or general)

 See: “Growing a language”
 (Guy Steele, 1998)

•  2nd meaning: “Enabling Growth”
–  can be used for small as well as

large systems
–  allows for smooth growth from

small to large.

6

A Growable Language

•  Flexible Syntax
•  Flexible Types
•  User-definable operators
•  Higher-order functions
•  Implicits
...

•  Make it relatively easy to build new DSLs on top of Scala
•  And where this fails, we can always use the macro

system (even though so far it’s labeled experimental)

7

A Growable Language

8

SBT
Chisel Spark

Spray
Dispatch

Akka

ScalaTest
Squeryl Specs

shapeless

Scalaz

Slick

Growable = Good?

In fact, it’s a double edged sword.

•  DSLs can fracture the user community (“The Lisp curse”)
•  Besides, no language is liked by everyone, no matter

whether its a DSL or general purpose.
•  Host languages get the blame for the DSLs they embed.

Growable is great for experimentation.
But it demands conformity and discipline for large scale
production use.

9

A Language For Growth

•  Can start with a one-liner.
•  Can experiment quickly.
•  Can grow without fearing to fall off the cliff.
•  Scala deployments now go into the millions of lines of

code.

–  Language works for very large programs
–  Tools are challenged (build times!) but are catching up.

“A large system is one where you do not know that some of
its components even exist”

10

What Enables Growth?

•  Unique combination of Object/Oriented and Functional
•  Large systems rely on both.

 Object-Oriented Functional

•  Unfortunately, there’s no established term for this

object/functional?

11

12

Would prefer it like this

OOP FP

But unfortunately it’s often more like this

OOP
 FP

é
And that’s where we are J

How many OOP
people see FP

How many FP
people see OOP

Scala’s Role in History J

14

(from:James Iry: A Brief, Incomplete, and
Mostly Wrong History of Programming
Languages)

15

Another View: A Modular Language

 Large Systems

Object-Oriented Functional

 Small Scripts

= modular

Modular Programming

•  Systems should be composed from modules.

•  Modules should be simple parts that can be combined in

many ways to give interesting results.
(Simple: encapsulates one functionality)

But that’s old hat!

–  Should we go back to Modula-2?

–  Modula-2 was limited by the Von-Neumann Bottleneck (see John
Backus’ Turing award lecture).

–  Today’s systems need richer models and implementations.

16

FP is Essential for Modular Programming

Read:
 “Why Functional Programming Matters”
 (John Hughes, 1985).

Paraphrasing:
“Functional Programming is good because it leads to
modules that can be combined freely.”

17

Functions and Modules

•  Functional does not always imply Modular.
•  Some concepts in functional languages are at odds with

modularity:

–  Aggregation constructs may be lacking or 2nd class
–  Sometimes, assumes global namespace (e.g. type classes)
–  Dynamic typing? (can argue about this one)

18

Objects and Modules

•  Object-oriented languages are in a sense the successors
of classical modular languages.

•  But Object-Oriented does not always imply Modular
either.

•  Non-modular concepts in OOP languages:
–  Monkey-patching
–  Mutable state makes transformations hard.
–  Weak composition facilities require external DI frameworks.
–  Weak decomposition facilities encourage mixing domain models

with their applications.

19

Scala – The Simple Parts

Before discussing library modules, let’s start with the simple
parts in the language itself.

Here are seven simple building blocks that can be
combined in flexible ways.

Together, they cover much of Scala’s programming in the
small.

As always: Simple ≠ Easy !

20

#1 Expressions

Everything is an expression
	

	
 	
 if	
 (age	
 >=	
 18)	
 "grownup"	
 else	
 "minor"	

	

	
 	
 val	
 result	
 =	
 tag	
 match	
 {	

	
 	
 	
 	
 case	
 “email”	
 =>	
 	

	
 	
 try	
 getEmail()	

	
 	
 catch	
 handleIOException	

	
 	
 	
 	
 case	
 “postal”	
 =>	

	
 	
 scanLetter()	

	
 	
 }	

21

#2: Scopes

•  Everything can be nested.
•  Static scoping discipline.
•  Two name spaces: Terms and Types.
•  Same rules for each.

	
 def	
 solutions(target:	
 Int):	
 Stream[Path]	
 =	
 {	

	
 	
 	
 def	
 isSolution(path:	
 Path)	
 =	

	
 	
 	
 	
 	
 path.endState.contains(target)	

	
 	
 	
 allPaths.filter(isSolution)	

	
 }	

22

Tip: Don’t pack too much in one expression

•  I sometimes see stuff like this:

jp.getRawClasspath.filter(

	
 	
 _.getEntryKind	
 ==	
 IClasspathEntry.CPE_SOURCE).	

	
 	
 iterator.flatMap(entry	
 =>	
 	

	
 	
 	
 	
 flatten(ResourcesPlugin.getWorkspace.	

	
 	
 	
 	
 	
 	
 getRoot.findMember(entry.getPath)))	

	

•  It’s amazing what you can get done in a single
statement.

•  But that does not mean you have to do it.

23

Tip: Find meaningful names!

•  There’s a lot of value in meaningful names.
•  Easy to add them using inline vals and defs.

val	
 sources	
 =	
 jp.getRawClasspath.filter(

	
 	
 _.getEntryKind	
 ==	
 IClasspathEntry.CPE_SOURCE)	

def	
 workspaceRoot	
 =	
 	

	
 ResourcesPlugin.getWorkspace.getRoot	

def	
 filesOfEntry(entry:	
 Set[File])	
 =	
 	

	
 	
 flatten(workspaceRoot.findMember(entry.getPath)	

sources.iterator	
 flatMap	
 filesOfEntry	

24

#3: Patterns and Case Classes

	
 	
 trait	
 Expr	

	
 	
 case	
 class	
 Number(n:	
 Int)	
 extends	
 Expr	

	
 	
 case	
 class	
 Plus(l:	
 Expr,	
 r:	
 Expr)	
 extends	
 Expr	

	

	
 	
 def	
 eval(e:	
 Expr):	
 Int	
 =	
 e	
 match	
 {	

	
 	
 	
 	
 case	
 Number(n)	
 	
 =>	
 n	

	
 	
 	
 	
 case	
 Plus(l,	
 r)	
 =>	
 eval(l)	
 +	
 eval(r)	

	
 	
 }	

	

Simple & flexible, even if a bit verbose.

25

The traditional OO alternative

	
 	
 trait	
 Expr	
 {	

	
 	
 	
 	
 def	
 eval:	
 Int	

	
 	
 }	

	
 	
 case	
 class	
 Number(n:	
 Int)	
 extends	
 Expr	
 {	

	
 	
 	
 	
 def	
 eval	
 =	
 n	

	
 	
 }	

	
 	
 case	
 class	
 Plus(l:	
 Expr,	
 r:	
 Expr)	
 extends	
 Expr	
 {	

	
 	
 	
 	
 def	
 eval	
 =	
 l.eval	
 +	
 r.eval	

	
 	
 }	

OK in the small
But mixes data model with “business” logic

26

#4: Recursion

•  Recursion is almost always better than a loop.
•  Simple fallback: Tail-recursive functions
•  Guaranteed to be efficient

	

@tailrec	
 	

def	
 loop(xs:	
 List[T],	
 ys:	
 List[U]):	
 Boolean	
 =	

	
 	
 if	
 (xs.isEmpty)	
 ys.isEmpty	

	
 	
 else	
 ys.nonEmpty	
 &&	
 loop(xs.tail,	
 ys.tail)	

27

#5: Function Values

•  Functions are values
•  Can be named or anonymous

	

def	
 isMinor(p:	
 Person)	
 =	
 p.age	
 <	
 18	

val	
 (minors,	
 adults)	
 =	
 people.partition(isMinor)	

val	
 infants	
 =	
 minors.filter(_.age	
 <=	
 3)	

	

	

(this one is pretty standard by now)

(even though scope rules keep getting messed up
sometimes)

	

	

	
 	
 	

28

#6 Collections

•  Extensible set of collection types
•  Uniform operations
•  Transforms instead of CRUD
•  Very simple to use
•  Learn one – apply everywhere!

29

“The type of map is ugly / a lie”

30

Collection Objection

“The type of map is ugly / a lie”

31

Collection Objection

Why CanBuildFrom?

•  Why not define it like this?

class	
 Functor[F[_],	
 T]	
 {	

	
 	
 def	
 map[U](f:	
 T	
 =>	
 U):	
 F[U]	

}	

	

•  Does not work for arrays, since we need a class-tag to
build a new array.

•  More generally, does not work in any case where we
need some additional information to build a new
collection.

•  This is precisely what’s achieved by CanBuildFrom.

32

#7 Vars

•  Are vars not anti-modular?
•  Indeed, global mutable state often leads to hidden

dependencies.
•  But used-wisely, mutable state can cut down on

annoying boilerplate and increase clarity.

33

Where I use State

In dotc, a newly developed compiler for Scala:

–  caching lazy vals, memoized functions,
 interned names, LRU caches.

–  persisting once a value is stable, store it in an object.
–  copy on write avoid copying untpd.Tree to tpd.Tree.	

–  fresh values fresh names, unique ids
–  typer state 2 vars: current constraint & current diagnostics

	
 	
 	
 (versioned, explorable).

34

Why Not Use a Monad?

The fundamentalist functional approach would mandate that
typer state is represented as a monad.
Instead of now:

def	
 typed(tree:	
 untpd.Tree,	
 expected:	
 Type):	
 tpd.Tree	

def	
 isSubType(tp1:	
 Type,	
 tp2:	
 Type):	
 Boolean	

we’d write:

	

def	
 typed(tree:	
 untpd.Tree,	
 expected:	
 Type):	

TyperState[tpd.Tree]	

def	
 isSubType(tp1:	
 Type,	
 tp2:	
 Type):	

TyperState[Boolean]	

	

35

Why Not Use a Monad?

Instead of now:

if	
 (isSubType(t1,	
 t2)	
 &&	
 isSubType(t2,	
 t3))	
 result	

	

we’d write:
	

for	
 {	

	
 	
 c1	
 <-­‐	
 isSubType(t1,	
 t2)	

	
 	
 c2	
 <-­‐	
 isSubType(t2,	
 t3)	

	
 	
 if	
 c1	
 &&	
 c2	

}	
 yield	
 result	

Why would this be better?

36

A Question of Typing

Clojure Scala Haskell Idris Coq

syntax arguments effects values correctness

Statically checked properties

None of the 5 languages above is “right”.
It’s all a question of tradeoffs.

37

Forms of Modules

Modules can take a large number of forms
–  A function
–  An object
–  A class
–  An actor
–  A stream transform
–  A microservice

Modular programming is putting the focus on how modules
can be combined, not so much what they do.

Two stages: programming and deployment.

I am going to concentrate on the first.

 38

Scala’s Modular Roots

Modula-2 First language I programmed intensively

 First language for which I wrote a compiler.
Modula-3 Introduced universal subtyping
Haskell Type classes à Implicits
SML modules

 Object ≅ 	
 Structure
 Class ≅	
 	
 	
 Functor
 Trait ≅ Signature
 Abstract Type ≅ Abstract Type
 Refinement ≅ Sharing Constraint

39

Features Supporting Modular Programming

1.  Rich types with functional semantics.
–  gives us the domains of discourse

2.  Static typing.
–  Gives us the means to guarantee encapsulation
–  Read

“On the Criteria for Decomposing Systems into Modules”
 (David Parnas, 1972)

3.  Objects
4.  Classes and Traits

40

#5 Abstract Types
Example: A Graph Library

41

Where To Use Abstraction?

Simple rule:
–  Define what you know, leave abstract what you don’t.
–  Works universally for values, methods, and types.

42

Encapsulation = Parameterization!

Two sides of the coin:
1.  Hide an implementation

2.  Parameterize an abstraction

43

#6 Parameterized Types

	
 	

	
 	
 class	
 List[+T]	

	
 	
 class	
 Set[T]	

	
 	
 class	
 Function1[-­‐T,	
 +R]	

	

	
 	
 List[Number]	

	
 	
 Set[String]	

	
 	
 Function1[String,	
 Int]	

	

Variance expressed by +/- annotations
A good way to explain variance is by mapping to abstract
types.

44

Modelling Parameterized Types

class	
 Set[T]	
 {	
 ...	
 } 	
 	
 	
 class	
 Set	
 {	
 type	
 $T	
 }	

Set[String] 	
 	
 	
 	
 	
 Set	
 {	
 type	
 $T	
 =	
 String	
 }	

class	
 List[+T]	
 {	
 ...	
 } 	
 	
 	
 class	
 List	
 {	
 type	
 $T	
 }
List[Number]	
 	
 	
 	
 	
 List	
 {	
 type	
 $T	
 <:	
 Number	
 }	

	

 Parameters  Abstract members
	 	Arguments 	 Refinements

#7 Implicit Parameters

Implicit parameters are a simple concept
But they are surprisingly versatile.

Can represent a typeclass:

def	
 min(x:	
 A,	
 b:	
 A)(implicit	
 cmp:	
 Ordering[A]):	
 A	

46

#7 Implicit Parameters

Can represent a context

def	
 typed(tree:	
 untpd.Tree,	
 expected:	
 Type)
(implicit	
 ctx:	
 Context):	
 Type	

	

def	
 compile(cmdLine:	
 String)	

(implicit	
 defaultOptions:	
 List[String]):	
 Unit	

Can represent a capability:

def	
 accessProfile(id:	
 CustomerId)	

(implicit	
 admin:	
 AdminRights):	
 Info	

47

Simple Parts Summary

Everything is
an expression

Everything can
be nested

Compose
and match

Recurse Function
values

Immutable
collections

Vars

48

Module Parts Summary

Static Types

Objects

Classes

Traits Abstract
Types

Type
Parameters

Implicit
Parameters

49

Other Parts

•  Here are parts that are either not as simple or do not work
as seamlessly with the core:
–  Implicit conversions
–  Existential types
–  Structural types
–  Higher-kinded types
–  Macros

•  All of them are under language feature flags or
experimental flags.

•  This makes it clear they are outside the core.
•  My advice: Avoid, unless you have a clear use case

–  e.g, you use Scala as a host for a DSL or other language.

50

Thank You

Follow us on twitter:
@typesafe

Simple Parts Summary

Language
Expressions
Scopes and Nesting
Case Classes and Patterns
Recursion
Function Values
Collections
Vars

A fairly modest (some might say: boring) set of parts that
can be combined in flexible ways.
Caveat: This is my selection, not everyone needs to
agree.

52

Library
Static Types
Objects
Classes
Traits
Abstract Types
Type Parameters
Implicit Parameters

