
Simon Brown
@simonbrown

Software Architecture
vs Code

A developer-friendly
guide to software

architecture,
technical leadership

and the balance
with agility

10 out of 10
“Highly recommended reading”

!
Junilu Lacar, JavaRanch

http://leanpub.com/software-architecture-for-developers

I help software teams understand

software architecture,

technical leadership and

the balance with agility

I code too
⇧ ; - ⇧ 0

The intersection between

software
architecture

and

code

Software
architecture

There’s a common misconception
that software architecture should be

conceptual

and

exclude technology

Structure

Vision

How do we

communicate
software architecture?

Who here uses UML

on a regular basis?

9 out of 10 people

don’t use UML
(in my experience)

NoUML
diagrams?

In my experience,
software teams
aren’t able to

effectively
visualise the

software
architecture

of their systems

http://bit.ly/sa4d-risksystem

1. Import data from a Trade Data
System (TDS).

2. Import data from a Reference
Data System (RDS).

3. Merge the data feeds, perform
some risk calculations and
generate a Microsoft Excel file
of the risk report.

4. Allow a subset of users to modify
some parameters used during
the calculation process.

Financial risk system

The Shopping List

Boxes & No Lines

The “functional view

The Airline Route Map

Generically True

The “logical view”

Homeless Old C# Object (HOCO)

Choose your own adventure

What’s been
challenging about

the exercise?

Why has UML fallen
out of fashion?

[]
UML

is too complex,
is too low-level,
nobody knows it

Oh, plus we’re

agile
and/or do

TDD

Software architecture
provides

!

boundaries
for TDD

It’s usually difficult to
show the entire design on

a single diagram

Different views of
the design can be used to
manage complexity and

highlight different
aspects of the solution

Do the names
of those views make sense?

Development vs Physical
Process vs Functional
Conceptual vs Logical

Development vs Implementation
Physical vs Implementation

Physical vs Deployment

Logical and

development
views are often

separated

Software
System

Logical View

…

Process View Physical View

Development
View

Brain
freeze!

I bought a boat

Code

Would we

code
it that way?

Did we

code
it that way?

The code is the

embodiment
of the architecture

Abstraction
is about reducing detail
rather than creating a different representation

Abstractions help us

reason about
a big and/or complex

software system

Does your code reflect the

abstractions
that you think about?

We often think

in components

but write classes
(usually in layers)

A layered architecture

Presentation layer

Business layer

Data layer

Controller BController A

Repository A Repository B

Service BService A

Find the fish and
catch the fish you will

A typical layered architecture :-)

Presentation layer

Business layer

Data layer

Controller BController A

Repository A Repository B

Service BService A

Hexagons
and onions

Presentation layer

Data layer

This is still a layered architecture

Business
layer

Controller BController A

Repository A Repository B

Service BService A

Should layers be

considered
harmful?

Are layers significant

structural
elements

or just an

implementation
detail?

“the model-code gap”

Organisation
of code

vs
the architectural views

Software architecture
vs code

Merge
the code and the model

!

(not model-driven architecture!)

“architecturally-evident
coding style”

(subclassing, naming conventions, module dependencies, package structure, …)

It’s 2014, why can’t we
auto-generate

a useful set of software
architecture diagrams

from code?!

Diagramming tools see

packages
and classes

rather than components

Do OO programming
languages provide the
wrong abstractions for

building modern
software systems?

The intersection of

software architecture
and code

Abstractions
on diagrams

should reflect the

code

A common set of
abstractions

is more important than
a common notation

Agree on a simple set of abstractions
that the whole team can use to communicate

Class Class Class

Component Component Component

Container
(e.g. web server, application server, standalone application,

browser, database, file system, etc)

Container
(e.g. web server, application server, standalone

application, database, file system, etc)

Container
(e.g. web server, application server, standalone

application, database, file system, etc)

Software System

The C4 model

Classes
Component or pattern implementation details

System Context
The system plus users and system dependencies

Containers
The overall shape of the architecture and technology choices

Components
Logical components and their interactions within a container

Context
!
•What are we
building?

!
•Who is using it?

(users, actors, roles,
personas, etc)

!
•How does it fit into
the existing IT
environment?
(systems, services, etc)

Containers
!
•What are the high-
level technology
decisions? (including
responsibilities)

!
•How do containers
communicate with one
another?

!
•As a developer, where
do I need to write
code?

Components
!
•What components/
services is the
container made up of?

!
•Are the technology
choices and
responsibilities clear?

Sketches are maps
that help a team navigate a complex codebase

This isn’t about
creating a standard

Static
Model

(at different levels
of abstraction)

Runtime/
Behavioural

Deployment

Infrastructure
Operation
& Support

Data

Software developers are
the most important

stakeholders
of software architecture

C4 is about the static
structure of software,

which is ultimately
about code

Does your code reflect the abstractions
that appear on your software architecture diagrams?

If the answer is
“no” … are the

diagrams actually
useful?

Does the code for
techtribes.je

reflect the abstractions
on the software

architecture diagrams?

https://github.com/techtribesje/techtribesje

Did it start
out that

way?

What’s a “component”?

What’s a “component”?

Don’t do
unit testing!

“In the early days of computing when computers
were slow, unit tests gave the developer more
immediate feedback about whether a change

broke the code instead of waiting for system tests
to run. Today, with cheaper and more powerful
computers, that argument is less persuasive.”

“If your coders have more lines of unit tests than of code,
it probably means one of several things.

… Or the problem may be at the other end:

developers don’t have
adequately refined
design skills, or the

process doesn't encourage
architectural thinking and

conscientious design.”

“do not let your tests
drive your design”

Instead of unit testing
everything, what about
testing your significant

structural elements
as black boxes?

Don’t blindly copy
what everybody else
seems to be doing

To teach something,
you need to understand it

The point of this?

A good
architecture

enables
agility

Monolithic
architecture

Service-based
architecture

(SOA, micro-services, etc)

Something in between
(components)

The structure of your
software and the

decomposition
strategy

you use to get there
are important

Inspect
!

and
!

Adapt

Think about how to align the

software
architecture

and the

code

A simple
and explicit

mapping assists
on many levels

Until we find the one
true solution that works

in all contexts,

you’ll need
to think

simon.brown@codingthearchitecture.com

@simonbrown on Twitter

If your software system is
hard to work with,

change it!

