CHICAGO goto;

CONFERENCE 2015 conference

Types vs lests

Amanda Laucher

2l

"

- @pandamonial

3 follow us @gotochgo Conference: May 'l'i-;-]_.‘E._/'fiil'g')r'ksh,o'ps.:v],3_-'],'4 '

Intersubjectivity

Assumptions

JAVA VS HASKELL

fib = 1:1:zipWith (+) fib (tail fib)

L/nb seq = new ArraylList(n);

sed4[?] = 1;

toPfant 1= 2: 1 < n: 1)
seq[i] = seq[i-2] + seq[i-1];
}

(¥

Read'io
Succeed

Craftsmanship

Quotes

“When in doubt create a type.” Martin Fowler

‘Make illegal states unrepresentable.” Yaron Minsky

Michael Feathers describes legacy code as code
without an automated test suite and now designs his
code type signature first.

‘In 5 years we will view compilation as the weakest form of
unit testing” Stuart Halloway

“Given a good test suite the return on investment simply does
not justity the use of static typing” Jay Fields

TDD is dead

David Heinemeier Hansson-

http://david.heinemeierhansson.com/20 | 4/tdd-is-dead-long-live-testing.html
http://david.heinemeierhansson.com/20 | 4/test-induced-design-damage.html|

TDD isn’t useful anymore

- We've learnt what we needed
- Unit tests aren’t useful

- Testability hurts the design

Seb Rose

Claysnow Limited

Fnday 2 May 14

@sebrose

N

HASKELL ALL THE
THINGS!

J

type Shape = Circle of int | Cuboid of int * int

‘mad b eaas »

lg STUDIES IN LOGIC
— AND
THE FOUNDATIONS OF MATHEMATICS

VOLUME 149

BOAREANIRY T ARTEMONY T DM, OARBAY { AL KBCMEIN C AL FILLAY (KA, WOme
oy

Lectures on the
Curry-Howard
Isomorphism

M H. SORENSEN and P. URZYCZYN

L —— R ——

ELSEVIER

(oo tdo~vd e~ o

http://bit.Iy/1vvsXWC

Logic: another thing that
penguins aren’t very good at.

Type signature is a Theorem
Function definition is the Proof

Types:
Reduce bugs

Make code run faster

Define interfaces

Check compliance

Document model

Types:
Reduce bugs

Make code run faster

Define interfaces

Check compliance

Document model

Tests:

Reduce bugs

Check compliance

Document model

Test “logic”

Functional Tests

Property Based Testing

Unit Tests

REPL Tests

P

cesnsane

BANK OCR
CODE KATA

=> 123456789

TN . e TN .

> 123456789

e W o

Story 2

Account number:
34 5 8 8 2 8 6 5
Position names:
d9 d8 d7 do d5 d4 d3 d2 df

Checksum calculation:
(d1+2+3*d3+ ...49°"d9) mod 11 =0

TDD

Unit testing throughout or after

Functional Tests

Type signatures first

REPL driven

Property based testing first TDD

Property based testing throughout or after

Analysis

 100’'s of code samples
* Every language we could think of
* Github/web examples

type Digit = Zero | One | Two | Three
with member x.toInt = match x with
Zero -> 0O

One -> 1

Two -> 2

Three -> 3

let stringToDigit = function

|”

? -» Some Zero

? - Some One
|»

| -> Some Two
|”

:]” -> Some Three
| _-> None

type AccountType =
|[valid of Account
| Invalid
and Account = {d9 :int; d8 : int; d7 : int; d6 : int}
with member x.validate =
if int x.d9 + 2 *¥ int x.d8 + 3 *
int x.d7 + 4 * int x.d6 % 11 = 0
then Valid x
else Invalid

Removed Types

type LegalChar =
|Underscore
|Pipe
| Space

* Jests validate what types are not able to prove

* Property based testing : when there is a forAll, you should
consider a type

(deftest valid-checksums

(are [result] (= @ (mod result 11))
(checksum [6 6 © @ 6 06 0 5 1])
(checksum [3 4 58 8 2 8 6 5])
(checksum [4 57 50 8 9 0 0])))

(deftest invalid-checksums
(are [result] (not (= © (mod result 11)))
(checksum [1 2 345 6 7
(checksum [6 6 4 3 7 1 4 9 5])
(checksum [9 8 7 6 5 4 3 2
(deftest valid-account-numbers
(are [-vector] (valid? -vector)
[0 0000005 1]

[34588286 5]
[457 50800 0]))

(deftest invalid-account-numbers
(are [-vector] (not (valid? -vector))
[1234567 8 0]

[66 437149 5]
[987 65432 1]
[000000\?51]))

(deftest legibility
(is (legible? [0 @ @060 00065 1]))
(is (not (legible? [@ 00 0 0 \? 5 1]))))

(deftest describe-validity
(are [result -vector]
(= result (error-description -vector))
nil [0 060000605 1]
"ERR" [6 6 4 37 14 9 5]
"ILL" [0 @ @0 00 \?5 1]))

* Types save me from having to even think about
certain categories of tests.

* |t's easy to get lost when you never have to deliver.

* Syntax matters!

trait HasChecksum[L <: HList, S <: Nat]

implicit object hnilHasChecksum extends HasChecksum[HNil, 0]

implicit def hlistHasChecksum|[
H <: Nat, T <: HList, S <: Nat,
TL <: Nat, TS <: Nat,
HL <: Nat, HS <: Nat

](implicit
tl: LengthAux[T, TL],
ts: HasChecksum[T, TS],
hl: ProdAux[H, Succ[TL], HL],
hs: SumAux[HL, TS, HS],
sm: ModAux[HS, 11, S]

) = new HasChecksum[H :: T, S] {}

// Check that the list has nine elements and a checksum of zero.
def isValid[L <: HList](1l: L)(implicit

len: LengthAux[L, _9],

hcs: HasChecksum[L, 0]

) {}

// Now the following valid sequence (an example from the kata) compiles:
isvalid(3 :: 4 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: 5 :: HNil)

// But these invalid sequences don't:
// isValid(3 :: 1 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: 5 :: HNil)

// isValid(3 :: 4 :: 5 :: 8 :: 8 :: 2 :: 8 :: 6 :: ﬁNil)

describe "#check?" do

context "when the account number is good" do
good account numbers were taken from the user story specs
Then { checker.check?("000000000").should be true }
Then { checker.check?("000000051").should be true }
Then { checker.check?("123456789").should be_ true }
Then { checker.check?("200800000").should be true }
Then { checker.check?("333393333").should be true }
Then { checker.check?("490867715").should be true }
Then { checker.check?("664371485").should be true }
Then { checker.check?("711111111").should be true }
Then { checker.check?("777777177") .should be_true }

end

| haven't found a language that

does a great job of ma

states completely

Unre

KIng illega

oresentab

Types sca
Tests can

e better than tests
0e valuable for open source or

distributed teams as a form of safety and
documentation (especially functional tests)
Small/short lived codebase means little value
for types and great value for tests

ests take
compile

Types make it easy to refactor
'ypes help to modularize code

a long time to run and types to

Refactor to types

All Type Systems Are Not
Created Equal

Sum Types
Inclusive OR + Pattern Matching
Either [Failure, Success]

Product Types
(AND + Currying
records, objects, tuples
X*y*z)

Safety of nominal vs structural typing

Bool
Bool

type X
type Y

Type inference

Incomplete but expressive
OR
Complete but weak

In a perfect world...
Dependent Types

datatype 'a list with nat =
nil(0)
| {n:nat} cons(n+1) 'a * 'a list(n)
fun zip ([], []) = []
| zip (x :: xs, y ::ys) = (x, y) :: zip (xs, ys)
withtype {n:nat} <n> =>
‘a list(n) * 'b list(n) -> ('a * 'b) list(n)

In a perfect world...
Dependent Types

append : Vect n a -> Vect m a -> Vect (n_+ m) a

append Nil yS = ys
append (X :: XS) yS = X :: app XS VS

Final Thoughts

Types = For All
Tests = There Exists

Stringly Typed Programming in a
statically typed language?

Future languages will make type level
programming indistinguishable from the
rest of the code

Where does simulation testing fit in?
Mutation testing?

Type signature Is a Theorem
Function definition is the Proof

Types = For All
Tests = There Exists

Use the facilities available

CHICAGO

IIIIIIIIIIIIII
SOFTWARE DEVELOPMENT

CONFERENCE 2015

Ol0;

conference

9

Questions?

Please remember to evaluate via the GOTO
Guide App

»i

S

- @pandamonial

," follow us @gotochgo Conference: May ll-lE = ‘"fiil't_'jr"k‘ sh'o‘b st 13-14 -

