
Making This Rhinoceros Thunder
Attila Szegedi

@asz

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.2

The following is intended to outline our
general product direction. It is intended for
information purposes only, and may not be
incorporated into any contract. It is not a

commitment to deliver any material, code, or
functionality, and should not be relied upon in

making purchasing decisions. The
development, release, and timing of any

features or functionality described for Oracle’s
products remains at the sole discretion of

Oracle.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.3

What is Nashorn?

!Nashorn is an ECMAScript 5.1 runtime on top of JVM.
!Open source: all development happens in OpenJDK.
!Ships as standard part of Oracle’s Java SE starting with version 8.
!Accessible through standard javax.script.* API, or directly through
jdk.nashorn.api.scripting package.

!Command line: $JAVA_HOME/bin/jjs
!Has no interpreter currently; compiles to Java bytecode on-the-fly.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.4

Why Nashorn?

!Full ECMAScript 5.1 compliance.
!Modern codebase.
!Security minded.
!Some internally interesting goals:
!Proving ground for invokedynamic.
!Laying groundwork for general dynamic languages platform support.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.5

Performance, performance, performance

!It’s easy to write a slow language runtime.
!You can spend a lifetime writing optimizations in your runtime.
!Not all optimizations apply equally well.
!So I want to show you some good practices.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.6

Why Don’t I Just Make Nashorn So This Talk Isn’t Necessary?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.7

There Are Things Nashorn Doesn’t Control

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.8

Why Does This Talk Exist?

!We made Nashorn internals pretty smart by now:
!Parameter-type specialized compilation of functions.
!Static type inference for local variables.
!Optimistic typing with gradual deoptimizing recompilation where static
typing can’t take us.

!So what’s left then?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.9

Where Nashorn Can’t Help You

!… so you’ll need to help yourself when you:
! integrate it into your Java-based system.
!make things too hard for the runtime to reason about.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.10

Let’s Look At Some Existing Features

!I’ll quickly show you how Nashorn does:
!parameter type specialized compilation,
! local type inference, and
!optimistic typing.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.11

Parameter type specialized compilation

function square(x) {
 return x*x;
}
print(square(500));
print(square(500.1));

 public static square(Object;I)I
 0 iload 1
 1 iload 1
 2 invokedynamic imul(II)I
 7 ireturn

 public static square(Object;D)D
 0 dload 1
 1 dload 1
 2 dmul
 3 dreturn

!Here’s code versions for square generated when invoked with int and
double:

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.12

Static Type Inference

function am3(i,x,w,j,c,n) {
 var this_array = this.array;
 var w_array = w.array;

 var xl = x&0x3fff, xh = x>>14;
 while(--n >= 0) {
 var l = this_array[i]&0x3fff;
 var h = this_array[i++]>>14;
 var m = xh*l+h*xl;
 l = xl*l+((m&0x3fff)<<14)+w_array[j]+c;
 c = (l>>28)+(m>>14)+xh*h;
 w_array[j++] = l&0xfffffff;
 }
 return c;
}

!Here’s a little number cruncher from crypto.js Octane benchmark:

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.13

Static Type Inference

function ⟦D⟧am3(⟦D⟧i,⟦O⟧x,⟦O⟧w,⟦D⟧j,⟦I⟧c,⟦I⟧n) {
 var ⟦O⟧this_array = this.array;
 var ⟦O⟧w_array = w.array;

 var ⟦I⟧xl = x&0x3fff, ⟦I⟧xh = x>>14;
 while(--⟦D⟧n >= 0) {
 var ⟦I⟧l = this_array[i]&0x3fff;
 var ⟦I⟧h = this_array[i++]>>14;
 var ⟦D⟧m = xh*l+h*xl;
 ⟦O⟧l = xl*l+((m&0x3fff)<<14)+w_array[j]+c;
 ⟦D⟧c = (l>>28)+(m>>14)+xh*h;
 w_array[j++] = l&0xfffffff;
 }
 return c;
}

!Here’s Nashorn’s inferred types: !Trouble spots:
!“n” becomes double
!“l” becomes object
!“c” becomes double

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.14

Optimistic Typing

function ⟦I⟧am3(⟦I⟧i,⟦I⟧x,⟦O⟧w,⟦I⟧j,⟦I⟧c,⟦I⟧n) {
 var ⟦O⟧this_array = this.array;
 var ⟦O⟧w_array = w.array;

 var ⟦I⟧xl = x&0x3fff, ⟦I⟧xh = x>>14;
 while(--⟦I⟧n >= 0) {
 var ⟦I⟧l = this_array[i]&0x3fff;
 var ⟦I⟧h = this_array[i++]>>14;
 var ⟦I⟧m = xh*l+h*xl;
 ⟦I⟧l = xl*l+((m&0x3fff)<<14)+w_array[j]+c;
 ⟦I⟧c = (l>>28)+(m>>14)+xh*h;
 w_array[j++] = l&0xfffffff;
 }
 return c;
}

!Here’s Nashorn’s inferred types: !Trouble spots are gone!
!Optimistically assume that:
!decrement won’t overflow
!adds and multiplies won’t
overflow

!w_array has int elements

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.15

Synergy!

!These features working together ensure that the generated code
evolves to the tightest version that can handle the data.
function twice(f, x) {
 return f(f(x));
}

function inc(x) {
 return x++;
}

print(twice(inc, 5));
print(twice(inc, 5.1));

!We’ll end up with int twice(f, int)
and int inc(int).

!Then double inc(double), and
gradually int twice(f, double) will
morph into a double twice(f,
double).

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.16

Synergy!
print(⟦I⟧twice(inc, 5.1));

function ⟦I⟧twice(f, ⟦D⟧x) {
 return ⟦I⟧f(⟦I⟧f(⟦D⟧x));
}

function ⟦D⟧inc(⟦D⟧x) {
 return ⟦D⟧x++;
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.17

Synergy!
print(⟦I⟧twice(inc, 5.1));

function ⟦I⟧twice(f, ⟦D⟧x) {
 return ⟦I⟧f(⟦D⟧f(⟦D⟧x));
}

function ⟦D⟧inc(⟦D⟧x) {
 return ⟦D⟧x++;
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.18

Synergy!
print(⟦D⟧twice(inc, 5.1));

function ⟦D⟧twice(f, ⟦D⟧x) {
 return ⟦D⟧f(⟦D⟧f(⟦D⟧x));
}

function ⟦D⟧inc(⟦D⟧x) {
 return ⟦D⟧x++;
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.19

Synergy!
print(⟦D⟧twice(inc, 5.1));

function ⟦D⟧twice(f, ⟦D⟧x) {
 return ⟦D⟧f(⟦D⟧f(⟦D⟧x));
}

function ⟦D⟧inc(⟦D⟧x) {
 return ⟦D⟧x++;
}

print(⟦I⟧twice(inc, 5));

function ⟦I⟧twice(f, ⟦I⟧x) {
 return ⟦I⟧f(⟦I⟧f(⟦I⟧x));
}

function ⟦I⟧inc(⟦I⟧x) {
 return ⟦I⟧x++;
}

!The int versions of functions continue to exist, and will be used when
invoked with int parameters.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.20

Okay, But How Do We Deoptimize Running Code?
!To deoptimize running code, we must be able to:
!recompile it on the fly, and
!replace running code on top of the stack.

!We achieve this with a pure bytecode solution (runs on any JVM) that
!throws an exception where type assumptions are too narrow,
! links call site in caller with exception handler that derails into compiler,
!recompiles a new version of the code with wider type,
!compiles a separate one-shot continuation version of the code too,
! jumps into the continuation variant to resume execution.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.21

Let’s Write a Small Web Application

!We’ll use the Servlet API.
!To minimize overhead, I’ll use Jetty as an embedded server.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.22

Let’s Write a Small Web Application

!The webapp will run RSA encryption/decryption of plaintext.
!Crypto code taken from Google’s Octane benchmark suite.
!The logic is entirely written in JavaScript.
!Reasonably complex computation, with no I/O.
!JavaScript doesn’t have its own I/O libraries, so you’d just use Java’s
I/O facilities

!There’s no JavaScript performance story in that.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.23

Let’s Write a Small Web Application

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.24

Most Naive Approach

!Instantiate a new ScriptEngine, on each request.
!Evaluate the JavaScript code in it, on each request.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.25

Most Naive Approach

protected EvaluationResult evaluate(final String plainText) throws ScriptException {
 final ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn");
 engine.eval(new URLReader(scriptURL));

 engine.put("plainText", plainText);
 final String cipherText = (String) engine.eval("encrypt(plainText)");
 engine.put("cipherText", cipherText);
 final String roundTripPlainText = (String) engine.eval("decrypt(cipherText)");
 return new EvaluationResult(cipherText, roundTripPlainText);
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.26

How well does it perform?
!Not really well.
!Let’s look at percentage of the requests served within certain time (ms):

 50% 2020
 66% 2304
 75% 2580
 80% 2745
 90% 2986
 95% 3770
 98% 6241
 99% 7041
 100% 7041

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.27

Where does the time go?
!Most time spent in one-time code setup (dynamic linking).

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.28

Let’s Use a Single Engine Instance!
private static final ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn");

protected EvaluationResult evaluate(final String plainText) throws ScriptException {
 final Bindings b = engine.createBindings();
 ScriptContext context = new SimpleScriptContext();
 context.setBindings(b, ScriptContext.ENGINE_SCOPE);
 engine.eval(new URLReader(scriptUrl), context);
 final String cipherText = (String) ((JSObject) b.get("encrypt")).call(null, plainText);
 final String roundTripPlainText = (String) ((JSObject) b.get("decrypt")).call(null, cipherText);
 return new EvaluationResult(cipherText, roundTripPlainText);
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.29

How well does it perform?
!Much better!
!Let’s look at percentage of the requests served within certain time (ms):

 50% 195
 66% 229
 75% 281
 80% 323
 90% 424
 95% 523
 98% 681
 99% 828
 100% 2968

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.30

Code caching
!There’s code caching within a single engine instance.
!If you pass URLReader to eval, Nashorn will retrieve already generated
code for that URL on subsequent attempts.

!Code is only compiled once.
!--class-cache-size=nnnn can be used to govern the cache size.
Defaults to 50 scripts.

!Still, why open a Reader on every request if we don’t even read the
script?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.31

Let’s Use Compilable/CompiledScript!
private static final ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn");
private static final URL scriptUrl = CryptoServletBase.class.getResource(SCRIPT_NAME);
private static final CompiledScript compiledScript =
 ((Compilable)engine).compile(new URLReader(scriptUrl)));

protected EvaluationResult evaluate(final String plainText) throws ScriptException {
 final Bindings b = engine.createBindings();
 ScriptContext context = new SimpleScriptContext();
 context.setBindings(b, ScriptContext.ENGINE_SCOPE);
 compiledScript.eval(context);
 final String cipherText = (String) ((JSObject) b.get("encrypt")).call(null, plainText);
 final String roundTripPlainText = (String) ((JSObject) b.get("decrypt")).call(null, cipherText);
 return new EvaluationResult(cipherText, roundTripPlainText);
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.32

How well does it perform?
!Somewhat better!
!Let’s look at percentage of the requests served within certain time (ms):

 rdr csr
 50% 195 159
 66% 229 194
 75% 281 261
 80% 323 289
 90% 424 380
 95% 523 455
 98% 681 533
 99% 828 710
 100% 2968 3076

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.33

Are We Re-Evaluating Everything?
!There’s an eval call on every request. Isn’t that slow?
!Not necessarily, as the script defines functions.
!Code is compiled once, what happens on every evaluation is that
Bindings is populated with the function objects.

!Function object is effectively a pair of (lexical scope, code). Cheap to
construct.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.34

Flexible Separation of Compile and Run Time
!JavaScript (and most dynamic languages) don’t mention “compile time”
and “run time” in their specifications.

!In their world, a program is just run. Everything else is implementation
detail.

!That’s why when you integrate, you have a discrete set of choices of
how to split these tasks.

!Of course, there’s the further tiny detail of program’s global variable
namespace.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.35

What if We Used a Single Bindings Object?
private static final ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn");
static {
 engine.eval(new URLReader(scriptUrl));
}
private static final JSObject encryptFunction = (JSObject)engine.get("encrypt");
private static final JSObject decryptFunction = (JSObject)engine.get("decrypt");

protected EvaluationResult evaluate(final String plainText) throws ScriptException {
 final String cipherText = (String) encryptFunction.call(null, plainText);
 final String roundTripPlainText = (String) decryptFunction.call(null, cipherText);
 return new EvaluationResult(cipherText, roundTripPlainText);
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.36

How well does it perform?
!Whoa!
!Let’s look at percentage of the requests served within certain time (ms):

 50% 35
 66% 36
 75% 38
 80% 39
 90% 42
 95% 45
 98% 52
 99% 60
 100% 2968

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.37

Yes, But Is It Threadsafe?

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.38

Let’s Turn Optimism On
!Optimistic typing is off by default.
!If we turn it on, Nashorn’s compiler will emit type-speculative code, and
adaptively recompile code on-the-fly when needed.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.39

Let’s Turn Optimism On

import jdk.nashorn.api.scripting.NashornScriptEngineFactory;

private static final ScriptEngine engine;

static {
 final NashornScriptEngineFactory factory = new NashornScriptEngineFactory();
 engine = factory.getScriptEngine(“--optimistic-types=true");
 …
}

!We need to use Nashorn-specific API to instantiate a type-optimistic
engine.

!Technique can be used in general to pass command-line flags to a
Nashorn engine.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.40

Non-Optimistic vs. Optimistic Performance

 nonopt opt
 50% 35 12
 66% 36 13
 75% 38 14
 80% 39 14
 90% 42 17
 95% 45 20
 98% 52 26
 99% 60 30
 100% 2968 4703

Percentage of the requests served within a certain time (ms)

2x-3x faster, …

… but slower to start up

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.41

Why is Optimistic Slower to Start?
!When a type can’t be proven statically, it’ll be presumed to be int.
!When the assumption fails, code is recompiled.
!35 functions are recompiled 67 times total for this application.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.42

Why is Optimistic Slower to Start?
function bnpMultiplyTo(a,r) {
 var this_array = this.array;
 var r_array = r.array;
 var x = this.abs(), y = a.abs();
 var y_array = y.array;

 var i = x.t;
 r.t = i+y.t;
 while(--i >= 0) r_array[i] = 0;
 for(i = 0; i < y.t; ++i) r_array[i+x.t] = x.am(0,y_array[i],r,i,0,x.t);
 r.s = 0;
 r.clamp();
 if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.43

Benefiting From Compile/Run Time Interleaving
 var this_array = this.array;
 var r_array = r.array;
 var x = this.abs(), y = a.abs();
 var y_array = y.array;

!Compiler kicks in while code is running. It can peek into runtime objects.
!It evaluates side-effect free expressions and looks at their types.
!Above, when it recompiled because of “this.array” failed to be int, it
peeked into “r.array” and saw it’s an object.

!“y.array” couldn’t be peeked into before “y” was evaluated, though.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.44

Optimistic vs. Non-Optimistic Performance
!Time for a car analogy!
!Gears!
!Lower gear: easier to start, but
lower maximum speed

!Higher gear: harder to start, but
higher maximum speed

Image from http://libreshot.com/vehicles/gear-stick/

http://libreshot.com/vehicles/gear-stick/

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.45

Optimistic vs. Non-Optimistic Performance
!Nashorn has no interpreter currently.
!Starts with a compiler; so already
the lowest gear is 2nd.

!Optimistic types can be considered
a 3rd gear.

!Also, there’s no shifting mechanism
at present… Whichever you start up
with is the one you get for the whole
duration of the engine.

Image from http://libreshot.com/vehicles/gear-stick/

http://libreshot.com/vehicles/gear-stick/

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.46

Using the Type Info Cache
!Nashorn can remember the type information between JVM runs.
!Disabled by default, but can be enabled with
‑Dnashorn.typeInfo.maxFiles=nnnn system property.
!Number specifies the number of cache files. There’s one file per
JavaScript function across any number of scripts, so plan accordingly.

!If cache is outgrown, oldest entries get evicted.
!Also possible to specify
‑Dnashorn.typeInfo.maxFiles=unlimited for unlimited cache
(can help you with initial sizing).

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.47

Type Caching Performance Improvement

non-optimistic 2968
optimistic 4703
optimistic w/type cache 3570

Longest request time (ms)

!It got better, but still somewhat slower startup than non-optimistic.
!It’s a tradeoff we need to live with for now.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.48

Yes, But Is It Threadsafe?
!Try to stress it with two different texts to encrypt concurrently.
!Our servlet checks if it ends up with the same cleartext and if not,
sends back a 500 Internal Server Error.

$ ab -n 1000 -c 2 http://…
…
Non-2xx responses: 0
…

$ ab -n 1000 -c 2 http://…
…
Non-2xx responses: 0
…

!Seems okay.
!BUT…

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.49

Let’s Make It Stateful

private static final ScriptEngine engine = new ScriptEngineManager().getEngineByName("nashorn");
static {
 engine.eval(new URLReader(scriptURL));
}

protected EvaluationResult evaluate(final String plainText) throws Exception {
 engine.put("plainText", plainText);
 final String cipherText = (String) engine.eval("encrypt(plainText)");
 engine.put("cipherText", cipherText);
 final String roundTripPlainText = (String) engine.eval("decrypt(cipherText)");
 return new EvaluationResult(cipherText, roundTripPlainText);
}

!Let’s pass data through engine bindings. Don’t do this at home.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.50

Yes, But Is It Threadsafe?

$ ab -n 1000 -c 2 http://…
…
Non-2xx responses: 12
…

$ ab -n 1000 -c 2 http://…
…
Non-2xx responses: 12
…

!Oopsie.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.51

Shared Mutable State Is the Enemy of Thread Safety
protected EvaluationResult evaluate(final String plainText) throws ScriptException {
 engine.put("plainText", plainText);
 final String cipherText = (String) engine.eval("encrypt(plainText)");
 engine.put("cipherText", cipherText);
 final String roundTripPlainText = (String) engine.eval("decrypt(cipherText)");
 return new EvaluationResult(cipherText, roundTripPlainText);
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.52

So, Let’s Go Back To Separate Bindings
!We already saw the separate bindings performance for Reader vs.
CompiledScript.

!Let’s see it with optimistic too.
 rdr csr opt
 50% 195 159 135
 66% 229 194 145
 75% 281 261 154
 80% 323 289 160
 90% 424 380 234
 95% 523 455 288
 98% 681 533 369
 99% 828 710 459
 100% 2968 3076 3682

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.53

Recommendations
!Keep it stateless.
!If you can’t:
!Use a single engine instance, but…
!… use separate bindings.
!… or make it Java specific with synchronization:

var syncedFn = Java.synchronized(fn, lockObj);

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.54

Why Use a Single Engine?
!Code is cached on engine level.
!Hidden classes are maintained on engine level.
!These are interleaved:
!code contains call sites, linking is hidden-class specific.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.55

Why Use a Single Engine?
Engine Code

cache
Script
classScript
classScript
class

Bindings Bindings Bindings

Object

Function String

!Engines are thread-safe.
!Bindings are not.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.56

If you move data across bindings, though…
!Linking is less effective.
!Nashorn has two representations of internal objects:
!ScriptObject (never seen outside of a Bindings it belongs to)
!ScriptObjectMirror (implements JSObject)

!ScriptObject outside of a Bindings is always mirrored.
!Even when used in a different engine instance.
!Even when used in a same engine, but different Bindings.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.57

Structure of a Nashorn Object
!Several general purpose
Object fields, and an
array to handle spillover.

!“Map” is what other
engines call “Hidden
class”, mapping names to
general purpose fields.

!In basic case, everything
is boxed.

JO2 extends ScriptObject

Object O0

PropertyMap map

Object[] objectSpill ScriptObject proto

ArrayData array

Object O1

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.58

Structure of a Nashorn Object
JD2 extends ScriptObject

long J0Object O0

PropertyMap map

long[] primitiveSpill

Object[] objectSpill ScriptObject proto

!When optimistic typing is used,
we add 64-bit fields that can hold
a primitive int/long/double.

ArrayData array

long J1Object O1

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.59

How Are Properties Allocated

!Number of fields is determined at compile time for object literals, scope
objects, and constructors.

!In the examples below, Nashorn always figures out the objects have
two properties.

!{} will have 0 fields, everything goes into spills.
!Numeric properties usually go into ArrayData.

{
 a: 1,
 b: 2
}

function F(a, b) {
 this.a = a;
 this.b = b;
}

function F(a, b) {
 return function() {
 return [a, b];
 }
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.60

Structure of a Nashorn Array object
NativeArray extends ScriptObject

PropertyMap map

ScriptObject proto

ArrayData array

IntArrayData

long length

int[] data

long[] primitiveSpill

Object[] objectSpill

No property fields!

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.61

Use Homogeneous Arrays

!Nashorn internally specializes arrays.
!An empty array starts out as an (empty) array of 32-bit signed ints.
!Can evolve to 64-bit ints, 64-bit floating point, or object.
!When a large int array gets an object element, all ints get boxed.
!Undefined elements and deleted indices are tracked with a bitmap.
!They don’t cause change of underlying storage type.

!Traversal on object arrays is obviously slower.
!Try to avoid differently typed sentinels.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.62

Avoid eval

!If you use eval(), compiler loses most of its reasoning abilities.
!Function with eval becomes variable arity; we don’t type-specialize it.
!No function local variables are stored in JVM local variables.
!True even if a nested function contains eval().

!Optimistic typing still works though, but all variable access goes
through property getters/setters on a lexical scope object.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.63

Avoid with

!with statement creates a dynamic scope fork within the lexical scope.
!It’s as scary as it sounds. Not as bad as eval, though.
!Variables potentially accessed within eval are promoted into scope.

var x; // goes into scope object
var y; // can remain JVM local variable

with(z) {
 do_something(x);
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.64

Property getter

var array = [
 { a: 1}, // “map1”
 { b: 1, a: 2}, // “map2”
 { c: 1, b: 2, a: 3}, // “map3”
 { d: 1, c: 2, b: 3, a: 3}, // “map4”
];

var x = 0;
for(var j = 0; j < array.length; ++j) {
 x += array[j].a;
}

relink();

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.65

Property getter

var array = [
 { a: 1}, // “map1”
 { b: 1, a: 2}, // “map2”
 { c: 1, b: 2, a: 3}, // “map3”
 { d: 1, c: 2, b: 3, a: 3}, // “map4”
];

var x = 0;
for(var j = 0; j < array.length; ++j) {
 x += array[j].a;
}

if(obj.map == obj.map1) {
 obj.J0
} else {
 relink();
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.66

Property getter

var array = [
 { a: 1}, // “map1”
 { b: 1, a: 2}, // “map2”
 { c: 1, b: 2, a: 3}, // “map3”
 { d: 1, c: 2, b: 3, a: 3}, // “map4”
];

var x = 0;
for(var j = 0; j < array.length; ++j) {
 x += array[j].a;
}

if(obj.map == obj.map2) {
 obj.J1
} else if(obj.map == obj.map1) {
 obj.J0
} else {
 relink();
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.67

Property getter

var array = [
 { a: 1}, // “map1”
 { b: 1, a: 2}, // “map2”
 { c: 1, b: 2, a: 3}, // “map3”
 { d: 1, c: 2, b: 3, a: 3}, // “map4”
];

var x = 0;
for(var j = 0; j < array.length; ++j) {
 x += array[j].a;
}

if(obj.map == obj.map3) {
 obj.J2
} else if(obj.map == obj.map2) {
 obj.J1
} else if(obj.map == obj.map1) {
 obj.J0
} else {
 relink();
}

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.68

Avoid polymorphic call sites

!Every object carries a pointer to a hidden class (“map”).
!Call sites (e.g. “get property color” in obj.color) are linked with
guards that check map referential identity.

!All objects at a call site have the same map: fast. Only a Java field
getter/setter or array element getter/setter.

!As the number of different maps at a call site increases: slows down.
!As cascading if(map == map1)/else if(map == map2)/…

!At 8 cascades, site switches to a new, megamorphic linkage where it
does a lookup through map on every invocation.

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.69

Avoid polymorphic call sites
var array = [
 { a: 1, b: 1},
 { a: 1, c: 1},
 { a: 1, d: 1},
 { a: 1, e: 1},
 { a: 1, f: 1},
 { a: 1, g: 1},
 { a: 1, h: 1},
 { a: 1, i: 1},
 { a: 1, j: 1}, // mega
];

var x = 0;
for(var i = 1; i < 10000000; ++i) {
 for(var j = 0; j < array.length; ++j) {
 x += array[j].a;
 }
}

!The line marked “//mega” will
take the execution time from 1.7
to 8.5 seconds on my machine.

!You can use --log=fields to
have Nashorn warn you when a
call site goes megamorphic.

Megamorphic call site is “.a”

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.70

Summary
!Nashorn does a lot under the hood to make sure your JavaScript code
runs fast: type specialized compilation, static type inference, optimistic
typing, typed arrays. The result is more than the sum of its parts.

!When you integrate with javax.script API, you must take care how you
compose it into your system (single engine, either separate bindings for
separate threads, or single bindings with explicit synchronization or other
way to take care of shared mutable state.)

!Initializing objects as literals, scopes, or in constructor functions is most
efficient storage-wise.

!Avoid polymorphism if you can.
!With statements and eval calls defeat lots of compiler optimizations.

Questions?
Please remember to evaluate via the GOTO

Guide App

