
Event Streams at Groupon
Storm, Mesos and Griddle

AJ & Erik Weathers

(with special guest Brian McCallister)

Storm

Spout P
Bolt A

Bolt X

Bolt B

 @Override
 public void execute(final Tuple tuple)
 {
 Span span = (Span) tuple.getValueByField("span");

 Trace trace = cache.getUnchecked(span.trace_id);
 trace.addSpan(span);

 collector.emit(new Values(trace.getId(), trace));
 }

Spout P
Bolt A

Bolt X

Bolt B

Supervisor

Worker
Executor

Task

Executor

Task

Executor

Task

Executor

Task

Worker
Executor

Task

Executor

Task

Executor

Task

Executor

Task

Server
Nimbus Supervisor

Worker
Executor

Task

Executor

Task

Executor

Task

Executor

Task

Worker
Executor

Task

Executor

Task

Executor

Task

Executor

Task

Supervisor
Server

Worker
Executor

Task

Executor

Task

Executor

Task

Executor

Task

Worker
Executor

Task

Executor

Task

Executor

Task

Executor

Task

Spout P
Bolt A

Bolt X

Bolt B

Supervisor
Server

Worker
Executor

Spout P

Executor

Bolt A

Executor

Bolt A

Executor

Bolt X

Executor

Spout P

Executor

Bolt X

Supervisor
Server

Worker
Executor

Bolt X

Executor

Bolt B

Executor

Bolt B

Executor

Bolt X

Executor

Spout P

Executor

Bolt ASpout P

Spout P Spout P

Bolt A

Bolt A

Bolt A

Bolt X

Bolt X Bolt X

Bolt X

Bolt B

Bolt B

Storm on Mesos

Mesos

Supervisor

Worker
Executor

Task

Executor

Task

Executor

Task

Executor

Task

Worker
Executor

Task

Executor

Task

Executor

Task

Executor

Task

Server
Nimbus Supervisor

Worker
Executor

Task

Executor

Task

Executor

Task

Executor

Task

Worker
Executor

Task

Executor

Task

Executor

Task

Executor

Task

Supervisor
Server

Worker
Executor

Task

Executor

Task

Executor

Task

Executor

Task

Worker
Executor

Task

Executor

Task

Executor

Task

Executor

Task

Worker Host

Supervisor = Mesos Executor

Worker = Mesos Task

Storm Executor

Terminology Clarity

Storm Task

Storm Mesos Framework

• Bridges Storm & Mesos
• Implements interfaces from each

• Storm’s INimbus
• Mesos’s Executor and Scheduler

• Storm nimbus & supervisor daemons
run within the Framework processes

Resource Model: Storm

• Worker Slots
• {host, port}
• CPU, Mem ??
• static set of Slots in

native Storm

Resource Model: Mesos

• Schedulers receive Offers
of CPU, Mem, etc.

• Executors
• Launch Tasks

Worker Host

Supervisor

Worker
Topo A

Worker
Topo B

Worker
Topo C

Worker Host

Supervisor

Worker
Topo AWorker

Topo C

Supervisor

Supervisor

Worker
Topo B

Worker
Topo C

Worker
Topo C

Native Storm Storm on Mesos

More Supervisors

nimbus
core

Mesos
Nimbus
Class

Mesos

getAvailableSlots

resourceOffers

OO

OOOO

m
es

os
 S

ch
ed

ul
er

st
or

m
 IN

im
bu

sS2S1

S2 = TpWpS1 = TnWn

assignSlots
launchTasks

MesosNimbus process

Calculates
Assignments

MesosNimbus

Groupon Storm-as-a-Service
• Mesos cluster dedicated to Storm

• Submitter application for gatekeeping

• Rsync Nimbus local state

• Logging library for sending to Splunk & Kafka

• Metrics library for sending to Monitoring

• implements Storm’s IMetricsConsumer interface

Pros vs. Native Storm
• isolation for multi-tenancy

• Storm's isolation scheduler is static

• flexibility for number & size of worker processes

• avoid a bunch of separate under-utilized clusters

• team acts as centralized resource for Storm usage
and debugging

• consistent operational visibility

Griddle

• DSP-like workflow
• Adjacency Graph

Syntax
• Mechanical Sympathy

Website

OOB

Postcode Phone
NumberGeocodeCountry

Code

Website

OOB

Postcode

Phone
Number

Country
Code

Conditional

 Post
Condition

Conditional
End

Geocode

Active Edge Chooser

Website

OOB

Postcode

Country
Code

Conditional

 Post
Condition

Geocode

Conditional
End

Phone
Number

class_alias TRIGGER com.groupon.griddle.lib.Trigger
other aliases elided

Let's get started
vertex start of COUNTRY_CODE_INFERRER

Vertices active only for certain countries
vertex begin_country_dependent of TRIGGER
vertex geocoder of GEOCODER
vertex website of WEBSITE_NORMALIZER
vertex postcode of POSTCODE_NORMALIZER
vertex end_country_dependent of TRIGGER aggregates_inputs

Signal end of conditional processing
vertex country_dependence_done of TRIGGER

Active for all countries
vertex oo_business of OUT_OF_BUSINESS
Depends on country which can be mutated by geocoder
vertex phone_number of PHONE_NUM_NORMALIZER aggregates_inputs

If country deactivated, start will emit to {oo_business, country_dependence_done}
else will emit to {begin_country_dependent, oo_business}
emit_to {oo_business, begin_country_dependent, country_dependence_done}  
 from start with_chooser ACTIVE_EDGE_CHOOSER

Country dependent adjacencies
emit_to {postcode, website} from begin_country_dependent
emit_to {geocoder} from postcode
emit_to {end_country_dependent} from geocoder
emit_to {end_country_dependent} from website
emit_to {country_dependence_done} from end_country_dependent

phone number normalizer due to aggregates_inputs will act as post
deactive branch joining vertex
emit_to {phone_number} from oo_business
emit_to {phone_number} from country_dependence_done

Let's get started
vertex start of COUNTRY_CODE_INFERRER

Vertices active only for certain countries
vertex begin_country_dependent of TRIGGER
vertex geocoder of GEOCODER
vertex website of WEBSITE_NORMALIZER
vertex postcode of POSTCODE_NORMALIZER

Let's get started
vertex start of COUNTRY_CODE_INFERRER

Vertices active only for certain countries
vertex begin_country_dependent of TRIGGER
vertex geocoder of GEOCODER
vertex website of WEBSITE_NORMALIZER
vertex postcode of POSTCODE_NORMALIZER

Country dependent adjacencies
emit_to {postcode, website}
 from begin_country_dependent
emit_to {geocoder} from postcode
emit_to {end_country_dependent} from geocoder
emit_to {end_country_dependent} from website
emit_to {country_dependence_done}
 from end_country_dependent

emit_to {geocoder} from postcode

emit_to {oo_business,
 begin_country_dependent,
 country_dependence_done}
 from start with_chooser ACTIVE_EDGE_CHOOSER

emit_to {oo_business,
 begin_country_dependent,
 country_dependence_done}
 from start with_chooser ACTIVE_EDGE_CHOOSER

Active Edge Chooser

Website

OOB

Postcode

Country
Code

Conditional

 Post
Condition

Geocode

Conditional
End

Phone
Number

What does the DSL give you
• Griddle compiler creates a binary graph

• Binary graph processed with runtime that provides
optimal concurrency

The End

Future Work: Storm

• make parallelism configurable at runtime

• debuggability (stderr/out logging, history)

• metrics scalability

• replacement IScheduler to avoid big topologies
starving small topologies

