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    @Override 
    public void execute(final Tuple tuple) 
    { 
        Span span = (Span) tuple.getValueByField("span"); 

        Trace trace = cache.getUnchecked(span.trace_id); 
        trace.addSpan(span); 

        collector.emit(new Values(trace.getId(), trace)); 
    }
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Storm on Mesos
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Worker Host

Supervisor = Mesos Executor

Worker = Mesos Task

Storm Executor

Terminology Clarity

Storm Task



Storm Mesos Framework

• Bridges Storm & Mesos 
• Implements interfaces from each 

• Storm’s INimbus 
• Mesos’s Executor and Scheduler 

• Storm nimbus & supervisor daemons 
run within the Framework processes



Resource Model: Storm

• Worker Slots 
• {host, port} 
• CPU, Mem ?? 
• static set of Slots in 

native Storm



Resource Model: Mesos

• Schedulers receive Offers 
of CPU, Mem, etc. 

• Executors 
• Launch Tasks
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Groupon Storm-as-a-Service
• Mesos cluster dedicated to Storm 

• Submitter application for gatekeeping 

• Rsync Nimbus local state 

• Logging library for sending to Splunk & Kafka 

• Metrics library for sending to Monitoring 

• implements Storm’s IMetricsConsumer interface



Pros vs. Native Storm
• isolation for multi-tenancy 

• Storm's isolation scheduler is static 

• flexibility for number & size of worker processes 

• avoid a bunch of separate under-utilized clusters 

• team acts as centralized resource for Storm usage 
and debugging 

• consistent operational visibility





Griddle



• DSP-like workflow 
• Adjacency Graph 

Syntax 
• Mechanical Sympathy
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class_alias TRIGGER com.groupon.griddle.lib.Trigger
# other aliases elided

# Let's get started
vertex start of COUNTRY_CODE_INFERRER

# Vertices active only for certain countries
vertex begin_country_dependent of TRIGGER
vertex geocoder of GEOCODER
vertex website of WEBSITE_NORMALIZER
vertex postcode of POSTCODE_NORMALIZER
vertex end_country_dependent of TRIGGER aggregates_inputs

# Signal end of conditional processing
vertex country_dependence_done of TRIGGER

# Active for all countries
vertex oo_business of OUT_OF_BUSINESS
# Depends on country which can be mutated by geocoder
vertex phone_number of PHONE_NUM_NORMALIZER aggregates_inputs

# If country deactivated, start will emit to {oo_business, country_dependence_done}
# else will emit to {begin_country_dependent, oo_business}
emit_to {oo_business, begin_country_dependent, country_dependence_done}  
        from start with_chooser ACTIVE_EDGE_CHOOSER

# Country dependent adjacencies
emit_to {postcode, website} from begin_country_dependent
emit_to {geocoder} from postcode
emit_to {end_country_dependent} from geocoder
emit_to {end_country_dependent} from website
emit_to {country_dependence_done} from end_country_dependent

# phone number normalizer due to aggregates_inputs will act as post
# deactive branch joining vertex
emit_to {phone_number} from oo_business
emit_to {phone_number} from country_dependence_done



# Let's get started
vertex start of COUNTRY_CODE_INFERRER

# Vertices active only for certain countries
vertex begin_country_dependent of TRIGGER
vertex geocoder of GEOCODER
vertex website of WEBSITE_NORMALIZER
vertex postcode of POSTCODE_NORMALIZER



# Let's get started
vertex start of COUNTRY_CODE_INFERRER

# Vertices active only for certain countries
vertex begin_country_dependent of TRIGGER
vertex geocoder of GEOCODER
vertex website of WEBSITE_NORMALIZER
vertex postcode of POSTCODE_NORMALIZER



# Country dependent adjacencies
emit_to {postcode, website} 
        from begin_country_dependent
emit_to {geocoder} from postcode
emit_to {end_country_dependent} from geocoder
emit_to {end_country_dependent} from website
emit_to {country_dependence_done} 
        from end_country_dependent



emit_to {geocoder} from postcode



emit_to {oo_business, 
         begin_country_dependent, 
         country_dependence_done} 
    from start with_chooser ACTIVE_EDGE_CHOOSER



emit_to {oo_business, 
         begin_country_dependent, 
         country_dependence_done} 
    from start with_chooser ACTIVE_EDGE_CHOOSER
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What does the DSL give you 
• Griddle compiler creates a binary graph 

• Binary graph processed with runtime that provides 
optimal concurrency





The End



Future Work: Storm

• make parallelism configurable at runtime 

• debuggability (stderr/out logging, history) 

• metrics scalability 

• replacement IScheduler to avoid big topologies 
starving small topologies


