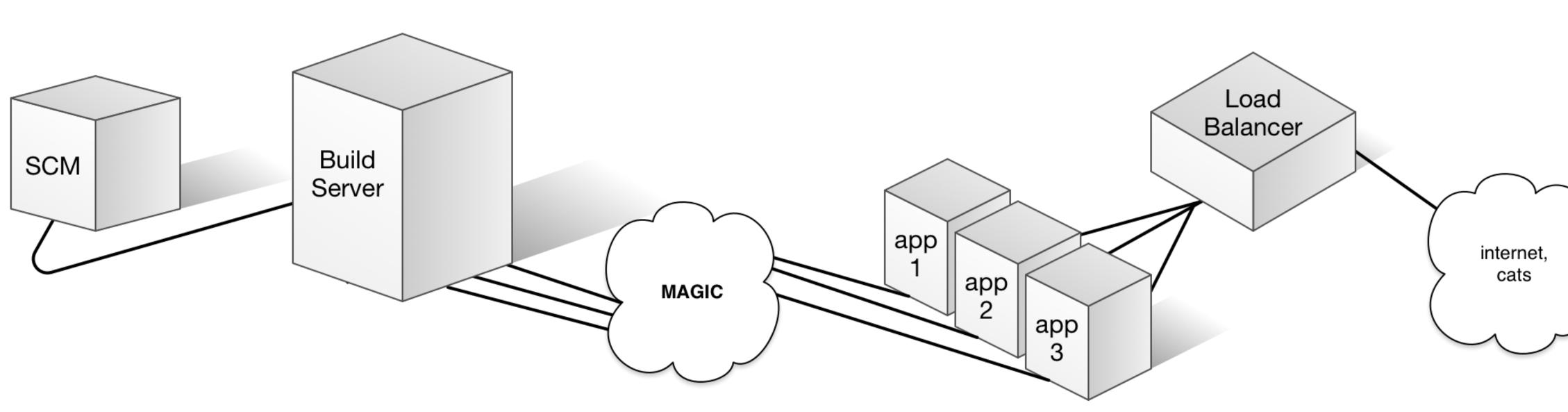
CONFERENCE 2015

Deploy Like A Boss Oliver Nicholas

Conference: May 11-12 / Workshops: 13-14


DEPLOY LIKE A BOSS

THE JOURNEY FROM 2 SERVERS TO 20,000

THE DEPLOYMENT PIPELINE

SECTION LOREM IPSUM DOLOR UBER KEYNOTE TEMPLATE

UBER TECHNOLOGIES, INC

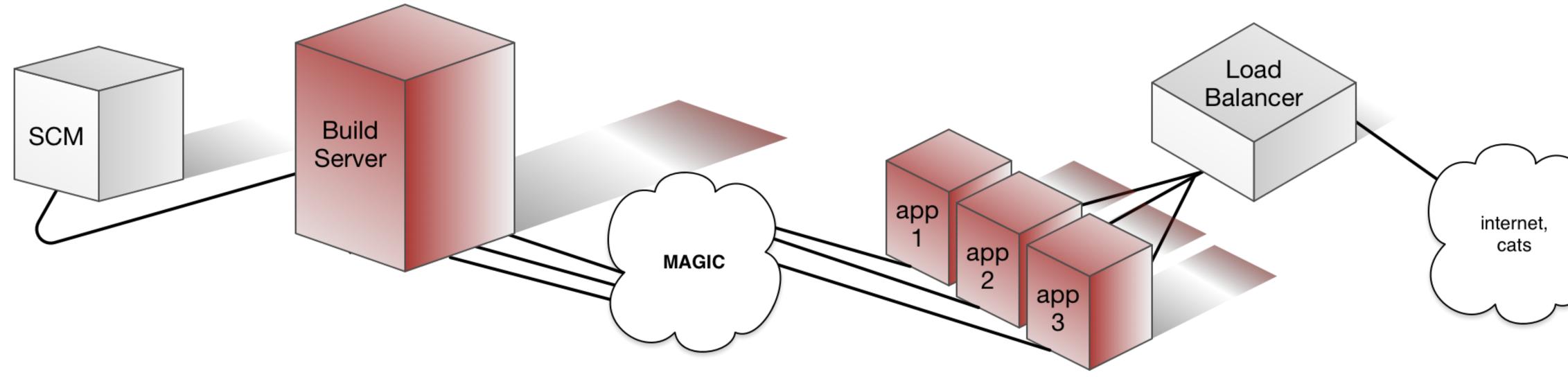
BUSINESS METRICS

- 311 Cities
- 57 Countries
- 1,000,000+ Rides per Day

ENGINEERING METRICS

- 300+ Services
- 2500 servers per DC
- 2-4 Datacenters (ABS)
- 10's of deployments per day

OLIVER NICHOLAS


SECTION LOREM IPSUM DOLOR UBER KEYNOTE TEMPLATE

DISTRIBUTION

SECTION LOREM IPSUM DOLOR UBER KEYNOTE TEMPLATE

ORCHESTRATION

SECTION LOREM IPSUM DOLOR UBER KEYNOTE TEMPLATE

THE EARLY DAYS "DISASTER DRIVEN DEVELOPMENT"

EARLY-STAGE DEPLOYMENT SYSTEMS DEPLOY AND PRAY

SIMPLE UNIX TOOLS:

- 1. history | grep scp
- 3.rsync -avz proj user@server:/var/www/ && ssh user@server /etc/init.d/project restart

DRAWBACKS:

- Not atomic
- Performance impact during deploy
- No load balancer management
- Brittle •

PROS:

• We don't care about any of the drawbacks yet.

2.tar zcvf - proj/ | ssh user@server "cat > /var/www/proj.tgz && tar xfz proj.tgz && /etc/init.d/project restart"

THE MIDDLE AGES "GOOD ENOUGH FOR WAY TOO LONG"

MIDDLE-STAGE DEPLOYMENT SYSTEMS EASY TO BUILD, HARD TO LEAVE

OPEN-SOURCE SOLUTIONS:

- Capistrano, Fabric
- Convenience wrappers for shell scripts.
- Encapsulate most of the SSH complexity.

TYPICAL FLOW:

- Build Code
- Sync to deploy targets
- Take target out of LB
- Shutdown app
- Swap symlink
- Start app up
- Healthchecks, Warmup
- Put target back into LB
- Move onto next host


```
EXAMPLE:
bigo@bigo-proforce/~$ cat deploy.rb
set :application, "uber"
set :scm, :git
set :repository, "git@git.uber.com:/proj.git"
set :user, "uber"
role :app, "server1", "server2", "server3"
set :deploy_to, "/var/www/"
```

namespace :deploy do
 task :restart, :roles => :app do
 run "/etc/init.d/proj restart"
 end
end

bigo@bigo-proforce/~\$ cap deploy

MIDDLE-STAGE DEPLOYMENT SYSTEMS

EASY TO BUILD, HARD TO LEAVE

PROS:

- Open-source libraries
- Lots of recipes out there for special cases
- Realistically, **good enough** for tens of servers

CONS:

- Not good enough for hundreds of servers.
- Still essentially utilizing tar-scp pipeline
- Though you can extend away from that (git pull from deploy target hosts)
- Poor support for multi-user environments (no deploy lock)

l from deploy target hosts) deploy lock)

ASIDE: BUILD DISTRIBUTION MOVING BITS FROM A -> B

BUILD DISTRIBUTION

ALL DRESSED UP WITH SOMEWHERE TO GO

NAIVE DESIGN

- Early systems almost always just consist of tar-scp or equivalent ullet
- Single build+distribute server ullet
- SPOF, slow (good way to overload a rack switch and cause a packet storm) ullet

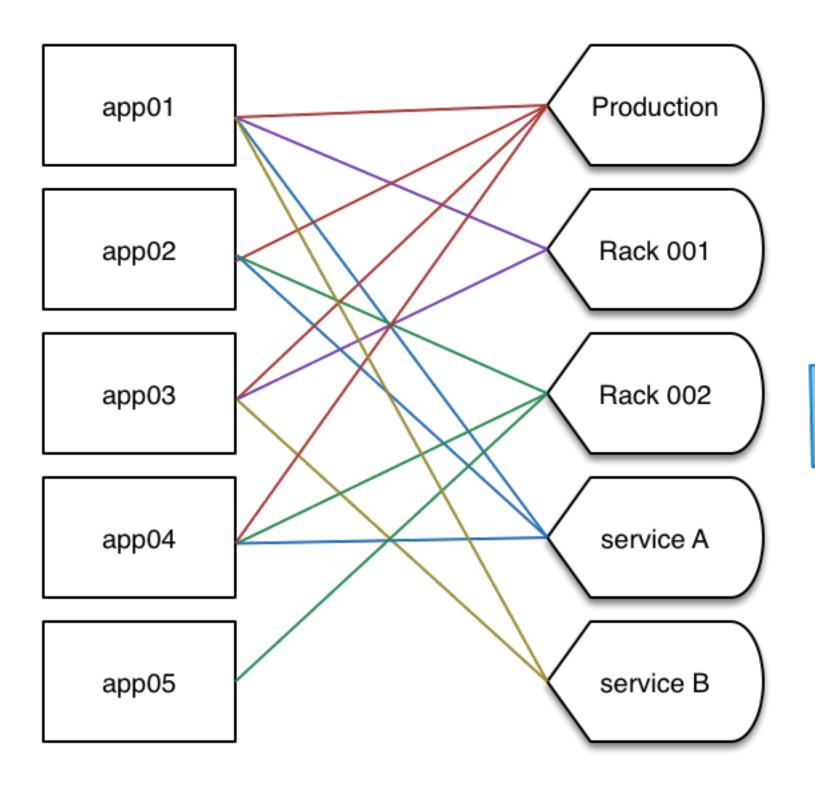
MORE SCALABLE APPROACHES

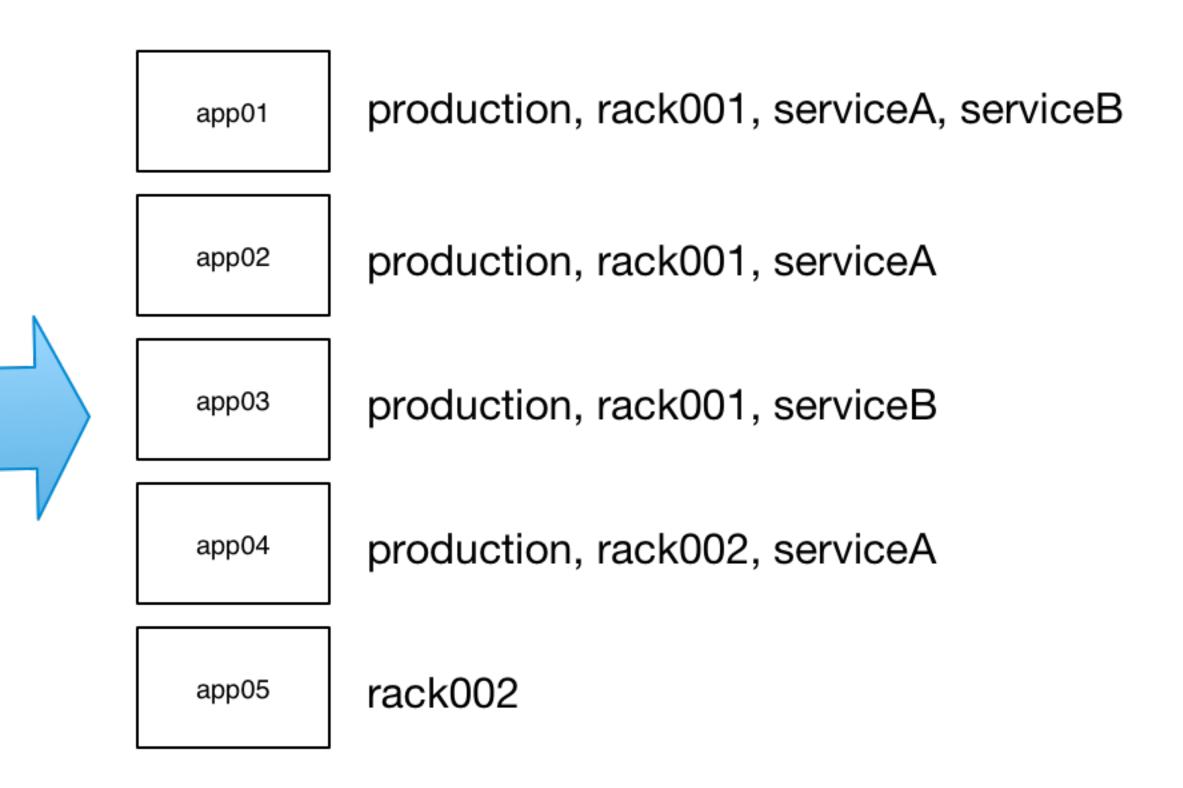
- Tiered....rsync hosts :)
- HDFS or equivalent distributed filesystems lacksquare
- BitTorrent lacksquare

THE MODERN ERA

MODERN ERA DEPLOYMENT SYSTEMS CALL ME, MAYBE

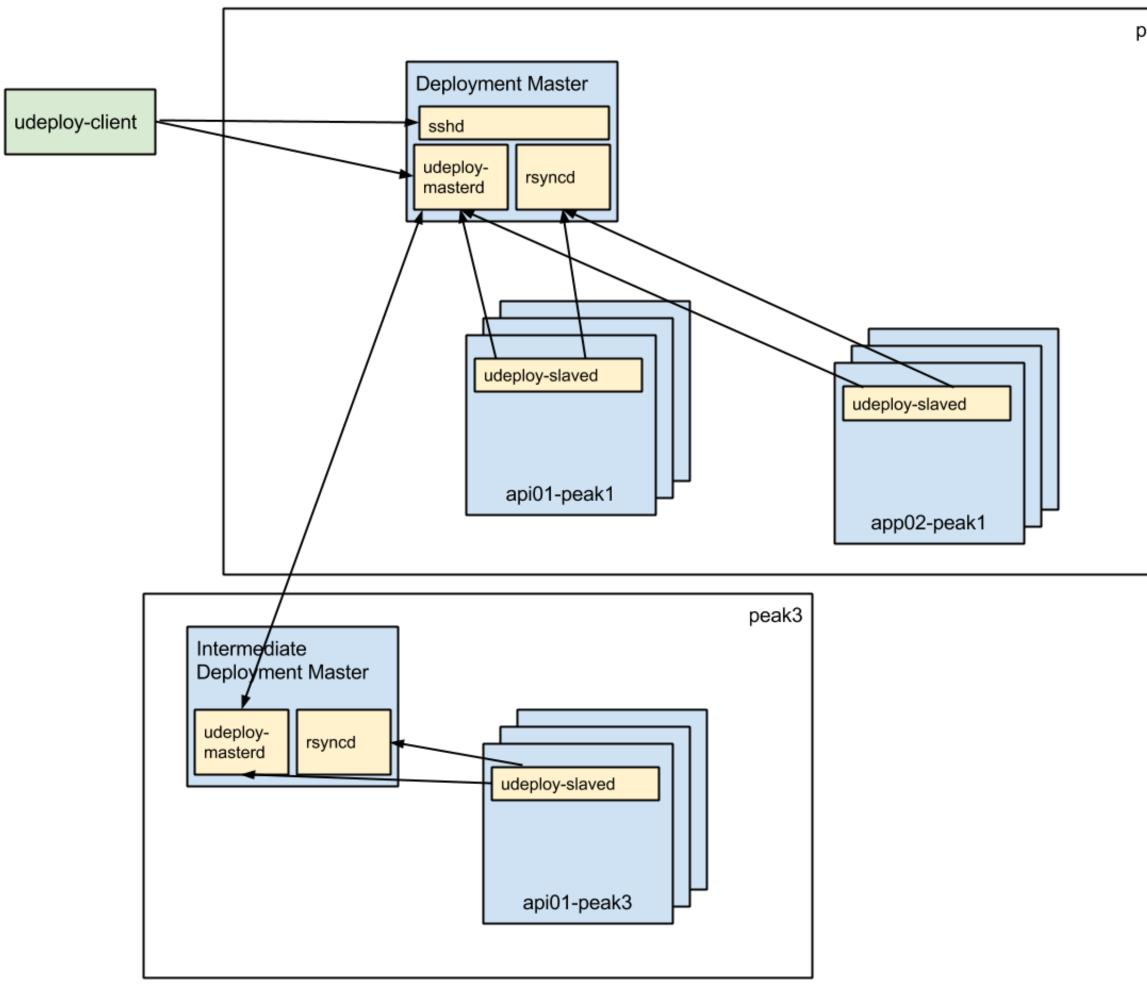
OUT WITH THE OLD...


- Earlier systems were all **push** based. ●
- When scaling, active $O(1) \rightarrow O(\mathbf{n})$ work where **n** scales with traffic tends to go sideways. ullet
- Consistency issues when servers are inaccessible.


IN WITH THE NEW.

- Pull ("poll") based model. ullet
- Leaf nodes (app servers) contact deploy master, rather than the other way around. ullet
- Goal-based the hard work happens on the app servers. ullet
- Database-driven server lists.

CLUSTO STOP LOSING SERVERS



UDEPLOY ARCHITECTURE

- Coordinator in each datacenter.
- Worker on each deploy target.
- Workers poll Coordinator for target state.
- Coordinator has a priori concept of deploy procedure, according to hardware database and deployment policy.
- Deployment policy is customizable for things like stuck machines.
- Intermediate Coordinators take cue from primary; multiple datacenters deployed in parallel.

SECTION LOREM IPSUM DOLOR UBER KEYNOTE TEMPLATE

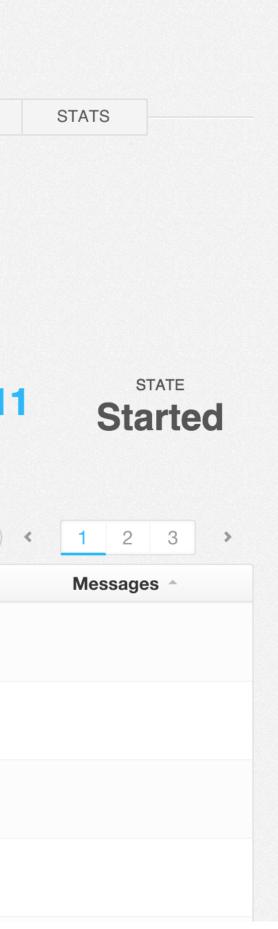
peak1

UDEPLOY TOUR SERVICE SELECTION

CEDVICEC

Name -	Kind 🔶	Instances	Revision ^	Build Date A	Status A
api	Clay-Wheel	❷ 960	Multiple	Multiple	Started
api-config	Static	♥ 221	68e4eb4	2015-05-11 04:40Z	Deployed
realtime-api-spec	Static	₽ 4 ⊘ 19	f54a7e6	2015-05-06 19:51Z	Deployed
rtapi	Node.js	✓ 70	Multiple	Multiple	Started

SECTION LOREM IPSUM DOLOR UBER KEYNOTE TEMPLATE


UDEPLOY TOUR

SERVICE VIEW

SERVIC	E A	νPΙ				
DEF	PLOYMENT	PIPELINES	BUILDS	TASKS	EVENTS	CONFIGURATI
			canary		production	
						BUILD DA
DEPLOYMENT Canary	dep	loyed/and 42-59	ACTIVE REVISION other/20 ⁻ 0-5-g574 ⁻	15-05-1 185a	1 T04-	2015-0
				15-05-1 185a	1T04- Filter	2015-0 04:49
canary		loyed/and 42-59		15-05-1 185a Revision ^		2015-0 04:49
Canary Upgrade Sta	art Res	start Stop	Status •	Revision ^	Filter other/2015-05-	2015-0 04:49
Canary Upgrade Sta Most •	art Res Pipeline ^	start Stop	Status Status	Revision deployed/an 11T04-42-59-5	Filter other/2015-05- -g574185a other/2015-05-	2015-0 04:49
Canary Upgrade Sta 2 Host • 2 adhoc03-sjc1	art Res Pipeline • us1	start Stop	Status Status	Revision deployed/an 11T04-42-59-5 deployed/an 11T04-42-59-5	Filter other/2015-05- -g574185a other/2015-05- -g574185a other/2015-05-	2015-0 04:4

SECTION LOREM IPSUM DOLOR UBER KEYNOTE TEMPLATE

UDEPLOY TOUR Build view

		LIRER uDeploy	
Build api			
Source			
• Browse	recent Git history		
Enter Gi	it ref		
Git History			
Filter		• Commits	Tag
Ref 🔶	Date -	Title 🔶	
c544c12	2015-05-11 03:46Z	update user import/export flow	
6e74220	2015-05-11 03:46Z	narrow web_login to allowed services; disable i	
f3b4125	2015-05-10 22:09Z	Make populous mapping store case insensitive	
a663f96	2015-05-10 22:09Z	Ensure rewards list on payment profile view is	
a663f96		Ensure rewards list on payment profile view is	
Build Desc	ription		
		Cancel	Bui
/201505102	203822-6- success t	uDeploy Kicked off by srussell@uber.com for deploy/pile.	In

SECTION LOREM IPSUM DOLOR UBER KEYNOTE TEMPLATE

$\bigcup \vdash \vdash \vdash () \land \forall$ STILL NOT PERFECT

STRENGTHS

- Coordinator only does **passive** work responding to requests in O(n) of # of Workers. lacksquare
- High-level fault detection and rollback triggers
- Offloads most of the work to the Workers. lacksquare

DRAWBACKS...

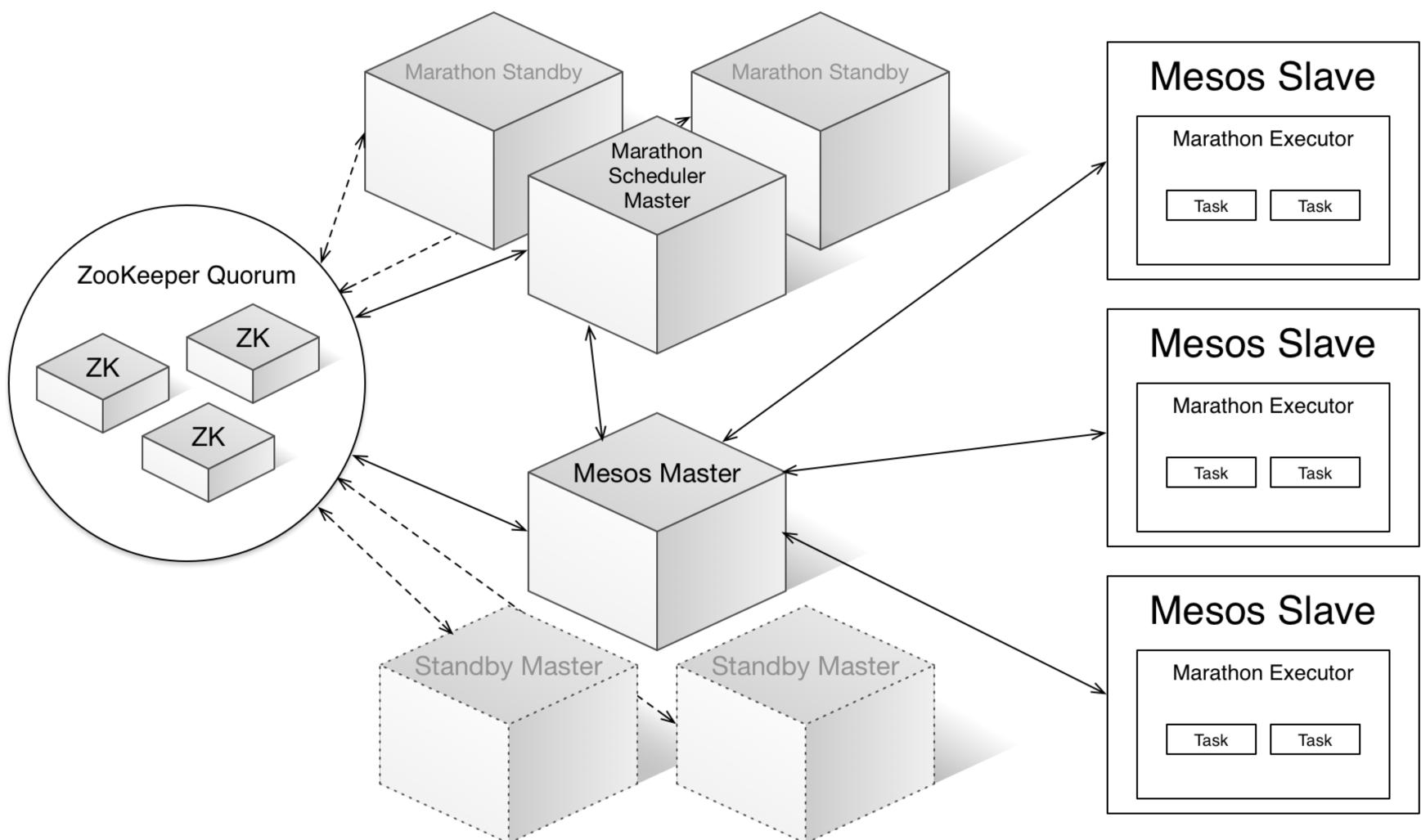
- Static server pools!
- Deployment relies on the static mapping of service -> server.
- Deploys must be **windowed** rather than full red/black.

SECTION LOREM IPSUM DOLOR UBER KEYNOTE TEMPLATE

THE FUTURE

THE FUTURE: MESOS THE MISSING BUILDING BLOCK

MESOS IS A...


- ...resource management engine.
- ...pluggable conduit for scheduling tasks against server resources.
- "...distributed systems kernel"

THE FUTURE: MESOS THE MISSING BUILDING BLOCK

HOW IT WORKS

- Slave makes resource offer to the Master ("I have 22 CPUs and 32GB of RAM available").
- Master sends offer to its ulletframeworks.
- Framework accepts portion ulletof offer and informs master ("Take 1 CPU and 64MB of RAM and run `yes`").
- Next slave resource offer takes decremented resources into account.

UBER

SECTION LOREM IPSUM DOLOR UBER KEYNOTE TEMPLATE

THE FUTURE: MESOS AND MARATHON

A FRAMEWORK FOR LONG-RUNNING TASKS

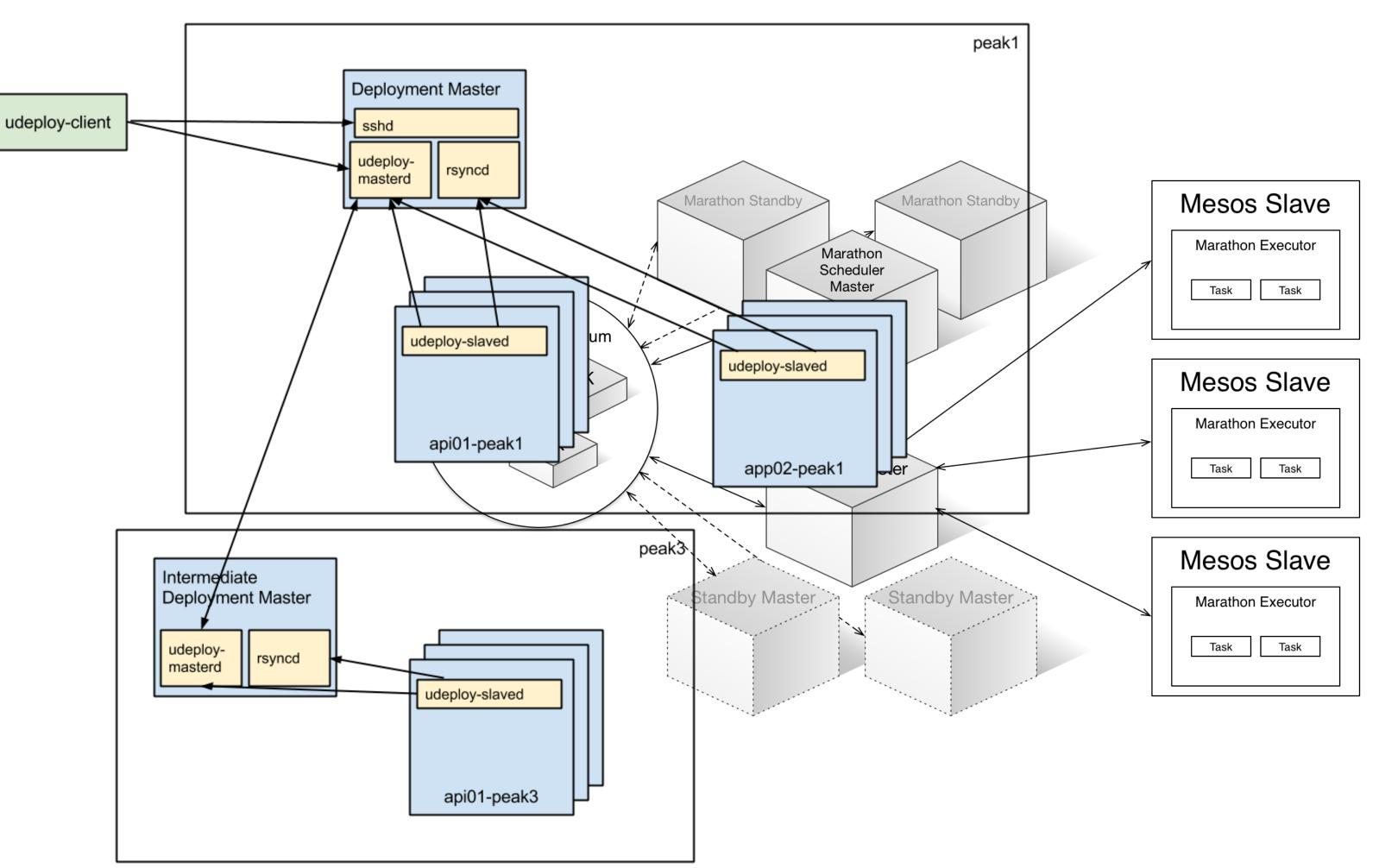
MARATHON:

- "A cluster-wide init and control system for services in cgroups or Docker containers"
- Built-in support for various deployment ulletpolicies, healthchecks, automated rollbacks.
- Rich constraint system: ullet
 - "distribute app across racks"
 - "no more than one instance per server" •
 - "only deploy to machines with kernel version > 3.13"

New Application	×
ID	
/waste_electricity	
CPUs	ļ
1	
Memory (MB)	
64	
Disk Space (MB)	
1	
Instances	
300	
Optional Settings	
Command	
yes	;

THE FUTURE: MESOS AND MARATHON AND UDEPLOY NIRVANA?

UDEPLOY KEY FEATURES:


- Beautiful interface for kicking off builds. ullet
- Authentication and Authorization support. ullet
- Coordination across multiple datacenters.
- Higher-order healthchecking/rollback functionality.

MESOS/MARATHON KEY FEATURES:

- HA masters with ZK coordination already built for us.
- Shifts focus from instances to clusters. lacksquare
- Homogenizes cluster resources "server" no longer the basic unit of organization. ullet
- Rich features around resource distribution.

THE FUTURE: MESOS AND MARATHON AND UDEPLOY NIRVANA?

SECTION LOREM IPSUM DOLOR UBER KEYNOTE TEMPLATE

MESOS/MARATHON/UDEPLOY AUTOSCALING FIRE YOUR OPERATIONS TEAM?

SHIFT OF FOCUS MAKES SCALING EASIER:

- Mesos+Marathon helps us solve the "doing the work" part of scaling.
- We let the software handle all the placement questions.

AUTOMATE THE **DECISION** TO SCALE:

- cgroups and Docker containers deployed under Mesos
- fine-grained CPU utilization metrics for each service instance
- good proxy for scaling decisions

SECTION LOREM IPSUM DOLOR UBER KEYNOTE TEMPLATE e work" part of scaling. questions.

er Mesos service instance

MORE MESOS FRAMEWORKS KITCHEN SINK INCLUDED

OPEN SOURCE MESOS FRAMEWORKS:

- Task Schedulers
 - Aurora, Marathon, Hadoop, Spark, Storm, Chronos
- Lots more
 - HDFS, Mysos, Cassandra, HyperTable
 - ElasticSearch ullet
 - Jenkins
 - MPI, Chapel

Mesosphere plug!

THE LONG JOURNEY

DEPLOYMENT SYSTEMS

- Start from simple shell pipelines
- Advance to Capistrano/Fabric-type DSLs
- Invert control flow once scale is achieved
- Abstract away individual servers at even larger scale
- Along the way, higher-availability code distribution models

Go forth and Deploy like an Evil Genius.

SECTION LOREM IPSUM DOLOR UBER KEYNOTE TEMPLATE

CONFERENCE 2015

Questions? Please remember to evaluate via the GOTO Guide App

Conference: May 11-12 / Workshops: 13-14