
Deploy Like A Boss
Oliver Nicholas



DEPLOY LIKE A BOSS
THE JOURNEY FROM 2 SERVERS TO 20,000
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THE DEPLOYMENT PIPELINE
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UBER TECHNOLOGIES, INC
BUSINESS METRICS 
• 311 Cities 

• 57 Countries 

• 1,000,000+ Rides per Day 

ENGINEERING METRICS 
• 300+ Services 

• 2500 servers per DC 

• 2-4 Datacenters (ABS) 

• 10's of deployments per day
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DISTRIBUTION
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ORCHESTRATION



THE EARLY DAYS
"DISASTER DRIVEN DEVELOPMENT"
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SIMPLE UNIX TOOLS: 
1.history	  |	  grep	  scp	  

2.tar	  zcvf	  -‐	  	  proj/	  |	  ssh	  user@server	  "cat	  >	  /var/www/proj.tgz	  &&	  tar	  xfz	  proj.tgz	  &&	  /etc/init.d/project	  restart"	  

3.rsync	  -‐avz	  proj	  user@server:/var/www/	  &&	  ssh	  user@server	  /etc/init.d/project	  restart	  

DRAWBACKS: 
• Not atomic 

• Performance impact during deploy 

• No load balancer management 

• Brittle 

PROS: 
• We don't care about any of the drawbacks yet.
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EARLY-STAGE DEPLOYMENT SYSTEMS
DEPLOY AND PRAY



THE MIDDLE AGES
"GOOD ENOUGH FOR WAY TOO LONG"
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OPEN-SOURCE SOLUTIONS: 
• Capistrano, Fabric 

• Convenience wrappers for shell scripts. 

• Encapsulate most of the SSH complexity. 

TYPICAL FLOW: 
• Build Code 

• Sync to deploy targets 

• Take target out of LB 

• Shutdown app 

• Swap symlink 

• Start app up 

• Healthchecks, Warmup 

• Put target back into LB 

• Move onto next host
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MIDDLE-STAGE DEPLOYMENT SYSTEMS
EASY TO BUILD, HARD TO LEAVE EXAMPLE: 

bigo@bigo-‐proforce/~$	  cat	  deploy.rb	  

set	  :application,	  "uber"	  

set	  :scm,	  :git	  

set	  :repository,	  "git@git.uber.com:/proj.git"	  

set	  :user,	  "uber"	  

role	  :app,	  "server1",	  "server2",	  "server3"	  

set	  :deploy_to,	  "/var/www/"	  

namespace	  :deploy	  do	  

	  	  task	  :restart,	  :roles	  =>	  :app	  do	  

	  	  	  	  run	  "/etc/init.d/proj	  restart"	  

	  	  end	  

end	  

bigo@bigo-‐proforce/~$	  cap	  deploy
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PROS: 
• Open-source libraries 

• Lots of recipes out there for special cases 

• Realistically, good enough for tens of servers 

CONS: 
• Not good enough for hundreds of servers. 

• Still essentially utilizing tar-scp pipeline 

• Though you can extend away from that (git pull from deploy target hosts) 

• Poor support for multi-user environments (no deploy lock)
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MIDDLE-STAGE DEPLOYMENT SYSTEMS
EASY TO BUILD, HARD TO LEAVE



ASIDE: 
BUILD DISTRIBUTION

MOVING BITS FROM A -> B
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NAIVE DESIGN 
• Early systems almost always just consist of tar-scp or equivalent 

• Single build+distribute server 

• SPOF, slow (good way to overload a rack switch and cause a packet storm) 

MORE SCALABLE APPROACHES 
• Tiered....rsync hosts :) 

• HDFS or equivalent distributed filesystems 

• BitTorrent
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BUILD DISTRIBUTION
ALL DRESSED UP WITH SOMEWHERE TO GO



THE MODERN ERA
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OUT WITH THE OLD... 
• Earlier systems were all push based. 

• When scaling, active O(1) -> O(n) work where n scales with traffic tends to go sideways. 

• Consistency issues when servers are inaccessible. 

IN WITH THE NEW.. 
• Pull ("poll") based model. 

• Leaf nodes (app servers) contact deploy master, rather than the other way around. 

• Goal-based - the hard work happens on the app servers. 

• Database-driven server lists.
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MODERN ERA DEPLOYMENT SYSTEMS
CALL ME, MAYBE
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CLUSTO
STOP LOSING SERVERS
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UDEPLOY ARCHITECTURE

• Coordinator in each datacenter. 

• Worker on each deploy target. 

• Workers poll Coordinator for target state. 

• Coordinator has a priori concept of deploy 
procedure, according to hardware database 
and deployment policy. 

• Deployment policy is customizable for 
things like stuck machines. 

• Intermediate Coordinators take cue from 
primary; multiple datacenters deployed in 
parallel.
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UDEPLOY TOUR
SERVICE SELECTION
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UDEPLOY TOUR
SERVICE VIEW
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UDEPLOY TOUR
BUILD VIEW
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UDEPLOY
STILL NOT PERFECT

STRENGTHS 
• Coordinator only does passive work - responding to requests - in O(n) of # of Workers. 

• High-level fault detection and rollback triggers 

• Offloads most of the work to the Workers. 

DRAWBACKS... 
• Static server pools! 

• Deployment relies on the static mapping of service -> server. 

• Deploys must be windowed rather than full red/black.



THE FUTURE
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THE FUTURE: MESOS
THE MISSING BUILDING BLOCK

MESOS IS A... 
• ...resource management engine. 

• ...pluggable conduit for scheduling tasks against server resources. 

• "...distributed systems kernel"
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THE FUTURE: MESOS
THE MISSING BUILDING BLOCK

HOW IT WORKS 
• Slave makes resource offer 

to the Master ("I have 22 
CPUs and 32GB of RAM 
available"). 

• Master sends offer to its 
frameworks. 

• Framework accepts portion 
of offer and informs master 
("Take 1 CPU and 64MB of 
RAM and run `yes`"). 

• Next slave resource offer 
takes decremented 
resources into account.
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THE FUTURE: MESOS AND MARATHON
A FRAMEWORK FOR LONG-RUNNING TASKS

MARATHON: 
• "A cluster-wide init and control system 

for services in cgroups or Docker 
containers" 

• Built-in support for various deployment 
policies, healthchecks, automated 
rollbacks. 

• Rich constraint system: 

• "distribute app across racks" 

• "no more than one instance per server" 

• "only deploy to machines with kernel 
version > 3.13"
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THE FUTURE: MESOS AND MARATHON AND UDEPLOY
NIRVANA?

UDEPLOY KEY FEATURES: 
• Beautiful interface for kicking off builds. 

• Authentication and Authorization support. 

• Coordination across multiple datacenters. 

• Higher-order healthchecking/rollback functionality. 

MESOS/MARATHON KEY FEATURES: 
• HA masters with ZK coordination already built for us. 

• Shifts focus from instances to clusters. 

• Homogenizes cluster resources - "server" no longer the basic unit of organization. 

• Rich features around resource distribution.
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THE FUTURE: MESOS AND MARATHON AND UDEPLOY
NIRVANA?
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MESOS/MARATHON/UDEPLOY AUTOSCALING
FIRE YOUR OPERATIONS TEAM?

SHIFT OF FOCUS MAKES SCALING EASIER: 
• Mesos+Marathon helps us solve the "doing the work" part of scaling. 

• We let the software handle all the placement questions. 

AUTOMATE THE DECISION TO SCALE: 
• cgroups and Docker containers deployed under Mesos 

• fine-grained CPU utilization metrics for each service instance 

• good proxy for scaling decisions
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MORE MESOS FRAMEWORKS
KITCHEN SINK INCLUDED

OPEN SOURCE MESOS FRAMEWORKS: 
• Task Schedulers 

• Aurora, Marathon, Hadoop, Spark, Storm, Chronos 

• Lots more 

• HDFS, Mysos, Cassandra, HyperTable 

• ElasticSearch 

• Jenkins 

• MPI, Chapel 

Mesosphere plug!
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THE LONG JOURNEY
DEPLOYMENT SYSTEMS 
• Start from simple shell pipelines 

• Advance to Capistrano/Fabric-type DSLs 

• Invert control flow once scale is achieved 

• Abstract away individual servers at even 
larger scale 

• Along the way, higher-availability code 
distribution models 

Go forth and Deploy like an Evil Genius.
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Questions?
Please remember to evaluate via the GOTO 

Guide App


