
Deploy Like A Boss
Oliver Nicholas

DEPLOY LIKE A BOSS
THE JOURNEY FROM 2 SERVERS TO 20,000

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 3

THE DEPLOYMENT PIPELINE

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015

UBER TECHNOLOGIES, INC
BUSINESS METRICS
• 311 Cities

• 57 Countries

• 1,000,000+ Rides per Day

ENGINEERING METRICS
• 300+ Services

• 2500 servers per DC

• 2-4 Datacenters (ABS)

• 10's of deployments per day

4

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 5

OLIVER NICHOLAS

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 6

DISTRIBUTION

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 7

ORCHESTRATION

THE EARLY DAYS
"DISASTER DRIVEN DEVELOPMENT"

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015

SIMPLE UNIX TOOLS:
1.history	 |	 grep	 scp	

2.tar	 zcvf	 -‐	 	 proj/	 |	 ssh	 user@server	 "cat	 >	 /var/www/proj.tgz	 &&	 tar	 xfz	 proj.tgz	 &&	 /etc/init.d/project	 restart"	

3.rsync	 -‐avz	 proj	 user@server:/var/www/	 &&	 ssh	 user@server	 /etc/init.d/project	 restart	

DRAWBACKS:
• Not atomic

• Performance impact during deploy

• No load balancer management

• Brittle

PROS:
• We don't care about any of the drawbacks yet.

9

EARLY-STAGE DEPLOYMENT SYSTEMS
DEPLOY AND PRAY

THE MIDDLE AGES
"GOOD ENOUGH FOR WAY TOO LONG"

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015

OPEN-SOURCE SOLUTIONS:
• Capistrano, Fabric

• Convenience wrappers for shell scripts.

• Encapsulate most of the SSH complexity.

TYPICAL FLOW:
• Build Code

• Sync to deploy targets

• Take target out of LB

• Shutdown app

• Swap symlink

• Start app up

• Healthchecks, Warmup

• Put target back into LB

• Move onto next host

11

MIDDLE-STAGE DEPLOYMENT SYSTEMS
EASY TO BUILD, HARD TO LEAVE EXAMPLE:

bigo@bigo-‐proforce/~$	 cat	 deploy.rb	

set	 :application,	 "uber"	

set	 :scm,	 :git	

set	 :repository,	 "git@git.uber.com:/proj.git"	

set	 :user,	 "uber"	

role	 :app,	 "server1",	 "server2",	 "server3"	

set	 :deploy_to,	 "/var/www/"	

namespace	 :deploy	 do	

	 	 task	 :restart,	 :roles	 =>	 :app	 do	

	 	 	 	 run	 "/etc/init.d/proj	 restart"	

	 	 end	

end	

bigo@bigo-‐proforce/~$	 cap	 deploy

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015

PROS:
• Open-source libraries

• Lots of recipes out there for special cases

• Realistically, good enough for tens of servers

CONS:
• Not good enough for hundreds of servers.

• Still essentially utilizing tar-scp pipeline

• Though you can extend away from that (git pull from deploy target hosts)

• Poor support for multi-user environments (no deploy lock)

12

MIDDLE-STAGE DEPLOYMENT SYSTEMS
EASY TO BUILD, HARD TO LEAVE

ASIDE:
BUILD DISTRIBUTION

MOVING BITS FROM A -> B

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015

NAIVE DESIGN
• Early systems almost always just consist of tar-scp or equivalent

• Single build+distribute server

• SPOF, slow (good way to overload a rack switch and cause a packet storm)

MORE SCALABLE APPROACHES
• Tiered....rsync hosts :)

• HDFS or equivalent distributed filesystems

• BitTorrent

14

BUILD DISTRIBUTION
ALL DRESSED UP WITH SOMEWHERE TO GO

THE MODERN ERA

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015

OUT WITH THE OLD...
• Earlier systems were all push based.

• When scaling, active O(1) -> O(n) work where n scales with traffic tends to go sideways.

• Consistency issues when servers are inaccessible.

IN WITH THE NEW..
• Pull ("poll") based model.

• Leaf nodes (app servers) contact deploy master, rather than the other way around.

• Goal-based - the hard work happens on the app servers.

• Database-driven server lists.

16

MODERN ERA DEPLOYMENT SYSTEMS
CALL ME, MAYBE

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 17

CLUSTO
STOP LOSING SERVERS

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 18

UDEPLOY ARCHITECTURE

• Coordinator in each datacenter.

• Worker on each deploy target.

• Workers poll Coordinator for target state.

• Coordinator has a priori concept of deploy
procedure, according to hardware database
and deployment policy.

• Deployment policy is customizable for
things like stuck machines.

• Intermediate Coordinators take cue from
primary; multiple datacenters deployed in
parallel.

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 19

UDEPLOY TOUR
SERVICE SELECTION

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 20

UDEPLOY TOUR
SERVICE VIEW

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 21

UDEPLOY TOUR
BUILD VIEW

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 22

UDEPLOY
STILL NOT PERFECT

STRENGTHS
• Coordinator only does passive work - responding to requests - in O(n) of # of Workers.

• High-level fault detection and rollback triggers

• Offloads most of the work to the Workers.

DRAWBACKS...
• Static server pools!

• Deployment relies on the static mapping of service -> server.

• Deploys must be windowed rather than full red/black.

THE FUTURE

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 24

THE FUTURE: MESOS
THE MISSING BUILDING BLOCK

MESOS IS A...
• ...resource management engine.

• ...pluggable conduit for scheduling tasks against server resources.

• "...distributed systems kernel"

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 25

THE FUTURE: MESOS
THE MISSING BUILDING BLOCK

HOW IT WORKS
• Slave makes resource offer

to the Master ("I have 22
CPUs and 32GB of RAM
available").

• Master sends offer to its
frameworks.

• Framework accepts portion
of offer and informs master
("Take 1 CPU and 64MB of
RAM and run `yes`").

• Next slave resource offer
takes decremented
resources into account.

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 26

THE FUTURE: MESOS AND MARATHON
A FRAMEWORK FOR LONG-RUNNING TASKS

MARATHON:
• "A cluster-wide init and control system

for services in cgroups or Docker
containers"

• Built-in support for various deployment
policies, healthchecks, automated
rollbacks.

• Rich constraint system:

• "distribute app across racks"

• "no more than one instance per server"

• "only deploy to machines with kernel
version > 3.13"

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 27

THE FUTURE: MESOS AND MARATHON AND UDEPLOY
NIRVANA?

UDEPLOY KEY FEATURES:
• Beautiful interface for kicking off builds.

• Authentication and Authorization support.

• Coordination across multiple datacenters.

• Higher-order healthchecking/rollback functionality.

MESOS/MARATHON KEY FEATURES:
• HA masters with ZK coordination already built for us.

• Shifts focus from instances to clusters.

• Homogenizes cluster resources - "server" no longer the basic unit of organization.

• Rich features around resource distribution.

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 28

THE FUTURE: MESOS AND MARATHON AND UDEPLOY
NIRVANA?

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 29

MESOS/MARATHON/UDEPLOY AUTOSCALING
FIRE YOUR OPERATIONS TEAM?

SHIFT OF FOCUS MAKES SCALING EASIER:
• Mesos+Marathon helps us solve the "doing the work" part of scaling.

• We let the software handle all the placement questions.

AUTOMATE THE DECISION TO SCALE:
• cgroups and Docker containers deployed under Mesos

• fine-grained CPU utilization metrics for each service instance

• good proxy for scaling decisions

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015 30

MORE MESOS FRAMEWORKS
KITCHEN SINK INCLUDED

OPEN SOURCE MESOS FRAMEWORKS:
• Task Schedulers

• Aurora, Marathon, Hadoop, Spark, Storm, Chronos

• Lots more

• HDFS, Mysos, Cassandra, HyperTable

• ElasticSearch

• Jenkins

• MPI, Chapel

Mesosphere plug!

SECTION LOREM IPSUM DOLOR
UBER KEYNOTE TEMPLATE

MARCH 1, 2015

THE LONG JOURNEY
DEPLOYMENT SYSTEMS
• Start from simple shell pipelines

• Advance to Capistrano/Fabric-type DSLs

• Invert control flow once scale is achieved

• Abstract away individual servers at even
larger scale

• Along the way, higher-availability code
distribution models

Go forth and Deploy like an Evil Genius.

31

Questions?
Please remember to evaluate via the GOTO

Guide App

