IIIIIIIIIIIIII OIO
EEEEEEEEEEEEEEEEEEE

CONFERENCE 2015 conference

Impossible Programs

Tom Stuart

3 foliow us @gotochgo Conference: May 11-12 / Workshops: 13-14

IMPOASSIBLE
PROGRAMS

@tomstuart / GOTO Chicago / 2015-05-11

http://twitter.com/tomstuart

PROGRAMS

CAN'T

EVERYTHING

IMPOASSIBLE
PROGRAMS

@tomstuart / GOTO Chicago / 2015-05-11

http://twitter.com/tomstuart

how can a

PRO% RAM
IMPOSSIBLE?

WE DEMAND
UNIVERSAL SYSTEMS

Compare two programming languages,
say Python and Ruby.

We can translate any Python program into Ruby.
We can translate any Ruby program into Python.

We can implement a Python interpreter in Ruby.
We can implement a Ruby interpreter in Python.

We can implement a Python interpreter in JavaScript.
We can implement a JavaScript interpreter in Python.

SKI calculus
Tag systems

Game of Life

Ruby
Lisp Register machines XSLT
JavaScript
Magic: The
Gatherin
Partial recursive C Python g
functions
Java

Lambda calculus Turing machines

C++ Rule 110 Haskell

Universal systems can run software.

We don't just want machines, we want
general-purpose machines.

PROGRAMS ARE DATA

>> puts 'hello world’
hello world
=> nil

>> program = "puts ‘hello world'"
=> "puts 'hello world'"

>> bytes in binary = program.bytes.
map { |byte| byte.to s(2).rjust(8, '0') }
=> ["01110000", "01l110101", "01110100", "0111001l1l", "00100000",
"00100111", "0l1l101000", "011600101", "01101100", "01101100",
"91101111", "00100000", "O1110111", "011601111", "01110010",
"01101100", "01100100", "00100111"]

>> number = bytes in binary.join.to 1(2)
=> 9796543849500706521102980495717740021834791

>> number = 9796543849500706521102980495717740021834791
=> 9796543849500706521102980495717740021834791

>> bytes in _binary = number.to s(2).scan(/.+?(?=.{8}*\z)/)

=> ["1ll1l1e000", "0ll160101", "O0lll0100", "01110011", "00100000",
00100111, "61101000", “011001601", "01101100", "011601100",
“901101111", "00l100000", "0O01110111", "01101111", "01110010",
01101100, "01100100", "00100111"]

>> program = bytes in binary.map { |string| string.to _i(2).chr }.join
=> "puts 'hello world'"

>> eval program
hello world
=> nil

UNIVERSAL SYSTEMS

+
PROGRAMS ARE DATA

INFINITE LOOPS

Every universal system can simulate every other
universal system, inc\uding itself.

More specifically: every universal programming
language can implement its own interpreter.

def evaluate(program, input)
parse program

evaluate program on input while capturing output
return output

end

>> evaluate('print $stdin.read.reverse', 'hello world')
=> "dlrow olleh"

def evaluate(program, input)
parse program
evaluate program on input while capturing output
return output

end

def evaluate on itself(program)
evaluate(program, program)
end

>> evaluate on itself('print $stdin.read.reverse')
=> "esrever.daer.nidts$ tnirp"

def evaluate(program, input)
parse program
evaluate program on input while capturing output
return output

end

def evaluate on itself(program)
evaluate(program, program)
end

program = $stdin.read

if evaluate on itself(program) == 'no‘
print 'yes'

else
print 'no’

end

does_it_say_no.rb

$ echo 'print $stdin.read.reverse' | ruby does it say no.rb
no

$ echo 'print "no" if $stdin.read.include?("no"™)"' | ruby does it say no.rb
yes

$ ruby does it say no.rb < does it say no.rb
?227?

yes

does_it_say_no.rb

no

does_it_say_no.rb

yes never finish

no other output? -

Ruby is universal

so we can write #evaluate in it

so we can construct a special program that loops forever

30 heres one

IMPOJSSIBLE
PROGRAM

Sometimes infinite loops are bad.

We could remove features from a language
until there’s no way to cause an infinite loop.

No unlimited iteration

remove While loops etc, only allow iteration

over finite data structures

No lambdas

to prevent (AX.X X) (AX.X X)

No recursive function calls

e.g. only allow a function to call ot
whose names come later in the alp

No blocking I/O

ner functions

nabet

The result is called a total
programming language.

[t must be impossible to write
an interpreter for a total
language in itself.

it we could write #evaluate in a total language

\ 4

then we could use it to construct a special program
that loops forever

\ 4

but a total language doesn't let you write programs
that loop forever

4

so it must be impossible to write #evaluate in one

(That's weird, because a total language’s
interpreter always finishes eventually, so
it feels like the kind ot program we
should be able to write.)

We could write an interpreter for a total language
in a universal language, or in some other more
powerful total language.

obay but
WHAI

ABOUT
REALITY?

#evaluate is an impossible program for any
total language, which means that total
languages can’t be universal.

Universal systems have impossible programs too.

input = $stdin.read
puts 1input.upcase

This program always finishes.*

* assuming STDIN is finite & nonblocking

input = $stdin.read
while true

do nothing
end

puts 1input.upcase

This program always loops forever.

Can we write a program that can
decide this in general?

(This question is called the halting problem.)

input = $stdin.read
output = '°

n = 1nput.length

until n.zero?
output = output + '*°
n =n - 1

end

puts output

require 'prime’

def primes less than(n)
Prime.each(n - 1).entries
end

def sum of two primes?(n)
primes = primes_less than(n)

primes.any? { |a| primes.any? { |b] a + b ==n } }
end
h = 4
while sum_of two primes?(n)
n=n+ 2
end

print n

def halts?(program, input)
parse program
analyze program

return true 1if program halts on input, false if not
end

halts?('print $stdin.read’,
true

halts?('while true do end',
false

"hello world')

"hello world')

def halts?(program, input)
parse program
analyze program

return true 1if program halts on input, false if not
end

def halts on itself?(program)
halts?(program, program)
end

program = $stdin.read

if halts _on_1itself?(program)
while true
do nothing
end
end

do_the_opposite.rb

$ ruby do the opposite.rb < do the opposite.rb

do_the_opposite.rb

eventually finish loop forever

Every real program must either loop forever
or not, but whichever happens, #halts?
will be wrong about it.

do_the_opposite.rb forces #halts? to

give the wrong answer.

if we could write #halts?

v

then we could use it to construct a special program
that forces #halts? to give the wrong answer

¥

but a correct implementation of #halts?
would always give the right answer

¥

so it must be impossible to write #halts?

We never actually want to ask a computer
whether a program will loop forever.

But we often want to ask computers
other questions about programs.

def prints hello world?(program, input)
parse program
analyze program

return true if program prints "hello world", false if not
end

prints _hello world?('print $stdin.read.reverse',
true

prints_hello world?('print $stdin.read.upcase’,
false

'dlrow olleh')

'dlrow olleh')

def prints hello world?(program, input)
parse program
analyze program

return true if program prints "hello world", false if not
end

def halts?(program, input)
hello world program = %Q{
program = #{program.inspect}
input = $stdin.read
evaluate(program, input)
print 'hello world'

}

prints _hello world?(hello world program, input)
end

if we could write #prints hello world?

¥

then we could use it to construct a correct
implementation of #halts?

but it's impossible to correctly implement #halts?

¥

so it must be impossible to write
#prints hello world?

Not only can we not ask
“does this program halt?”,
we also cant ask
“does this program do
what I want it to do?”.

This is Rice’s theorem:

Any interesting property
of program behavior
is undecidable.

WHY
DOES

THIS
HAPPEN?

We can't look into the future and predict
what a program will do.

The only way to find out for sure is to run it.
But when we run a program, we dont know

how long we have to wait for it to finish.
(Some programs never will.)

Any system with enough power to be selt-referential
can't correctly answer every question about itselt.

We need to step outside the self-referential system
and use a different, more powerful system to answer

questions about it.

But there is no more powerful system to upgrade to.

Ask undecidable questions, but give up it an
answer can’t be found in a reasonable time.

Ask several small questions whose answers
provide evidence for the answer to a larger
question.

Ask decidable questions by being conservative.

Approximate a program by converting it into
something simpler, then ask questions about the
approximation.

Tom Stuart

From Simple Machines to Impossible Programs

ol§
k=
o

-

Q!
)

90

—

U
E
-

O’REILLY"

ionbook.com

computat

ALA L)

end

This gives the virtual machine the opportunity to evaluate the condition and body as
many times as necessary:

>> Machine.new(

While.new(

LessThan.new(Variable.new(:x), Number.new(5)),
Assign.new(:x, Multiply.new(Variable.new(:x), Number.new(3)))
)5
{ x: Number.new(1) }
).xun

while (x < 5) { x = x * 3 }, {:x=>«ln}
if (x <5) {x=x%*3; while (x <5) { x=x%*31} } else { do-nothing }, {:x=>«in}
if (1<¢<5) {x=x%*3; while (x <5) { x * 3 } } else { do-nothing }, {:x=>«1n}
if (true) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«in}
x ¥ 3; while (x < 5) { x = x *3 }, {:x=>«1n}
1* 3; while (x < 5) { x = x * 3}, {ix=>«in}
3; while (x < 5) { x = x * 3 }, {:x=>«in}
do-nothing; while (x < 5) { x = x * 3 }, {:x=>«3»}
while (x < 5) { x = x * 3 }, {:x=>«3n}
if (x <5) {x=x%*3; while (x <5) { x=x%*31}} else { do-nothing }, {:x=>«3»}
if (3 <¢<5){x=x%*3; while (x <5) { x * 3 } } else { do-nothing }, {:x=>«3»}
if (true) { x = x * 3; while (x < 5) { x = x * 3 } } else { do-nothing }, {:x=>«3»}
X ¥ 3; while (x < 5) { x = x *3 }, {:x=>«3n}
3 *3; while (x < 5) { x = x *3 }, {:x=>«3n}
9; while (x < 5) { x = x * 3 }, {:x=>«3n}
do-nothing; while (x < 5) { x = x * 3 }, {:x=>«9n}
while (x < 5) { x = x * 3 }, {:x=>«9n}
if (x <5) { x=x%*3; while (x <5) { x=x*3}} else { do-nothing }, {:x=>«9»}

* 0 N

X
X
X

* 0 N

X
X
X

can adadress the problem Dy Introducing another macnine reature calied jree
ves. These are rules that the machine may spontaneously follow without reading
rinput, and they help here because they give the NFA an initial choice between two
arate groups of states:

e free moves are shown by the dotted unlabeled arrows from state 1 to states 2 and
[his machine can still accept the string 'aaaa’ by spontaneously moving into state
and then moving between states 2 and 3 as it reads the input, and likewise for

match several times instead of justonce ('aa’, 'aaa’, etc.), and the new start state allows
it to match the empty string without affecting what other strings it can accept.> We can
do the same for any NFA as long as we connect each old accept state to the old start

state with a free move:
—’O'" : zero or more times

.
i
-
.
-
*
.

‘e
.
-
)
-
.
*ee .
. .
0000000000

This time we need:

* A new start state, which is also an accept state
* All the accept states from the old NFA

To really exploit the potential of the stack, we need a tougher problem that’ll force us
to store structured information. The classic example is recognizing palindromes: as we
read the input string, character by character, we have to remember what we see; once
we pass the halfway point, we check our memory to decide whether the characters we
saw earlier are now appearing in reverse order. Here’s a DPDA that can recognize pal-

L P I . B T T T R T F 7 o { A |

S —

Use the PDA’s stack to store characters that represent grammar symbols (S, W, A,
E, ...) and tokens (w, v, =, *, ...). When the PDA starts, have it immediately push a
symbol onto the stack to represent the structure it’s trying to recognize. We want
to recognize SIMPLE statements, so our PDA will begin by pushing S onto the stack:
»> start _rule = PDARule.new(1, nil, 2, '$', ['S", '$'])
=> #<struct PDARule ..>
Translate the grammar rules into PDA rules that expand symbols on the top of the
stack without reading any input. Each grammar rule describes how to expand a
single symbol into a sequence of other symbols and tokens, and we can turn that

description into a PDA rule that pops a particular symbol’s character off the stack
and pushes other characters on:

>> symbol rules = [
<statement> ::= <while> | <assign>
PDARule.new(2, nil, 2, 'S', ['W']),
PDARule.new(2, nil, 2, 'S', ['A']),

<while> ::= 'w' '(' <expression> ')' '{' <statement> '}’
PDARule.new(2, nil, 2, "W', ['w', "(", "E', ")', '{", 'S, '}']),
<assign> ::= 'v' '=" <expression>

PDARule.new(2, nil, 2, 'A', ['v', '=', 'E']),

<expression> ::= <less-than>
PDARule.new(2, nil, 2, 'E', ['L']),

b, and then moves the tape head one square to the left; a rule labelled a/b;R does almost
the same, but moves the head to the right instead of the left.

Let’s see how to use a Turing machine to solve a string-recognition problem that push-
down automata can’t handle: identifying inputs that consist of one or more a characters
followed by the same number of bs and cs (e.g., 'aaabbbccc'). The Turing machine that
solves this problem has 6 states and 16 rules:

It works roughly like this:

1. Scan across the input string by repeatedly moving the tape head to the right until
an a is found, then cross it out by replacing it with an X (state 1).

2. Scan right looking for a b, then cross it out (state 2).

DUUCAPlCDDlUllD 10 LACUUULLUVIEG, WL LTUUULL Liay,y 1L LIV L, W dbl.l.ldlly PCLLULIII Ll Lail Uy

calling the left subexpression (which should be a LCFunction) with the right one as its

argument. This strategy is known as call-by-value evaluation—first we reduce the ar-
gument to an irreducible value, then we perform the call.

Let’s test our implementation by using the lambda calculus to calculate one plus one:

»> expression = LCCall.new(LCCall.new(add, one), one)
= =>m{->n{n[->n{->p{->x{plnlpllx]]}} }HIm]} H->p{->x{p[x]}
HI->p {->x{plx] }}
>> while expression.reducible?
puts expression
expression = expression.reduce
end; puts expression
S>m{->n{n[->n{->p{->x{plnlplx]] }} }Hm] }}H->p{->x{plx]} }¢
[->p { ->x {p[x] } }] N
i> ? % ?[i; n{->p{->x{plnlpllx]] } } H[>p{->x{plx]}}HH>p{->x4
p[x
S>p{->x{plx]}H>n{->p{->x{plnlpllx]] }} }N[->p{->x{plx]}}]
>x{->n{->p{->x{plnlp](x]] } } }Hx] }H->p{->x{plx]} }]
>n{->p{->x{plnfpllx]] } } H->p{ ->x{plx]}}]
>p{->x{pl->p{->x{plx] } Hpllx]] }}

=> nil

Well, something definitely happened, but we didn’t get quite the result we wanted: the
final expressionis-> p { -=> x { p[-> p { -> x { p[x] } }pl[x]] } }, butthelambda
calculus representation of the number two is supposed to be -> p { -> x
{ plp[x]] } })]. What went wrong?

The mismatch is caused bv the evaluation strateev we’'re usine. There are still reducible

PLPL->X1{ =
p[-> x { >y {
x{>y{y}
x} H[->p{ -
x { plplp[x]]]

} HI-

y

y

}
>
}
>

X 51l sl
} {] Hplll

|
X

N=>p{=2X{ =2y {=>27T{TIXJLYl 1t sl=>2p

->n{->p{->x{plnlp]

pI1]1 M[->x { >y { > f { flx]

}
{ x} }I

Him] } }m]{n]][n][x] }]

1[x]] } } H->p { pl-
yl } }H->p { > x
m] } } HIn][->p { -

MIE-> L{ > x{ > x{->y{->f{fxly] } } H-> x
x { >y {->f{fx]ly] } } MxIL]] } H-> 1 { -> x { >

p
>y{y

>y {>F{fix]ly]l }}H>x{ >y {y}}HH[>x{->y{->Ff{Ffx]
yl F P Y H->L1{>x{>x{->y{->Ff{Ff[xllyl}}H>x{-

{y}YHI[>x{ >y {->Ff{Ffx]ly] } } MxJ[1]] } }->1 {->x{->x
>y {>fF{flxllyl }}H>x{ >y {y}}HI[>x{->y{->Ff{F[x]
PRI P H>x { >y {>Ff {f[x]ly]l } } H->x{ >y {x} }I-
{>y{x}HI>n{->p{->x{plnlpllx]] } }H>n{->p{->x
nlplx]] Py H->n{ >p {->x{plnlpllx]] } } H>n{->p{->x
niplix]] } Y H->m{->n{n[->m{->n{n[->n{->p{->x{pln[p]
P} Hm] Y Hm]I[->p{->x{x}}]}}I->p{->x{plplx]] } }[->p
-> x { plplplplp(x]]1]] } HIIIIII[-> n { ->p { -> x { pln[p][x]] } } }[->n
>p{->x{plnlplx]]}}H>n{->p{->x{plnlp]lx]] }} H->n{-
>p{->x{plnlpllx]] }}H>m{->n{n[>n{>n{n[>n{->p{->
x { plnlpl[x]] } } }m] } Hm]J[->p { >x { x} }] } }H->p{ > x
{ plp[x]] } }I[-> p { -> x { plplplplp(x]]11]] } HIIIIII[-> n { -> p { -> x
{ plnlplIx]] } } H->n{->p{->x{plnlpllx]] }}H>m{->n{n[->m
{>n{n[->n{->p{->x{plnlpllx]] } } }Im] } Hm]I[-> p { -> x
{x}YMY YYH->p{->x{plp[x]] }}I[->p {->x{oplplelplp[x]1]11] } }111]]

{ -
]
y
y]
X
pl
pl
]

>

eSS VYA VVET XX SV Y

AN AN 0}".!/\.’.0 ANA AAATNANYAL WRAVANYWA ANMAANYYY Y A BAA Va2 A yv TV SWdh WV ALAANWY AANVAAALA MAAW MAMY Y uy\'\-xul

symbols S, K, and I (called combinators), each of which has its own reduction rule:

* Reduce S[a][b][c] to a[c][b[c]], where a, b, and ¢ can be any SKI calculus ex-
pressions.

* ReduceK[a][b] to a.
* Reduce I[a] toa.

For example, here’s one way of reducing the expression I[S][K][S][I[K]]:

I[SIIKI[SI[I[K]] » S[KI[SI[I[K]] (reduce I[S]toS)
> S[K][S][K] (reduce I[K] to K)
> K[K][S[K]] (reduce S[K][S][K] to K[K][S[K]])
> K (reduce K[K][S[K]] to K)

Notice that there’s no lambda-calculus-style variable replacement going on here, just
symbols being reordered, duplicated, and discarded according to the reduction rules.

It’s easy to implement the abstract syntax of SKI expressions:

class SKISymbol < Struct.new(:name)
def to s
name.to s
end

def inspect
to s
end
end

class SKICall < Struct.new(:left, :right)

LDOCS UIC ORd CalCUlusS CXPICSSION S[S|N[SJJ2LNINJJLL L2 2LN JL2LN N L))
[K[I]]] do the same thing as the lambda calculus expression -> p { -> x

{ plp[x]] } }? Well, it’s supposed to call its first argument twice on its second argu-
ment, SO wWe can try giving it some arguments to see whether it actually does that, just
like we did in “Semantics” on page 199:

»> inc, zero = SKISymbol.new(:inc), SKISymbol.new(:zero)
=> [inc, zero]
>> expression = SKICall.new(SKICall.new(two.to ski, inc), zero)
=> S[S[K[STI[SIK[KII[IITI[SISIK[SIIISIKIKII[I]]I[K[I]]][inc][zero]
>> while expression.reducible?

puts expression

expression = expression.reduce

end; puts expression

SIKLSII[SIKIK] (1111 [SISIKIS)
K[STI[SIKIK]I[I]][inc][
S][inc][S[K[K]][I][inc.

S]11]1[inc][zero]
S
]
S[K[K]I[I][inc]] [SSLKLS.
inc1117STS K
K

JIII]]]K[T]]
KIJ[I]]](K[I]][inc]][zero]
K[IK]J[I]]] K:;][inc]][zero]

| :H: 'm' 'x‘ 'x'

.'m"m"x"m
m A AR OV
A X 0nN-—un

Hf—l'x'l_lt_lt‘,;'x'

-~
g J —
.

pde

=

' N
H

H'

[

-

N

W

w

-

[inc
(inc]]
[inc]’
[inc]
[inc]
[inc]
[inc]

- :x: :m: u 'm' 'ml 'x'

J[I]1][K[I]][inc]][zero

[K[K]I[T]]JIK[I]][inc]]
KIT[I]][inc][K[I][inc]]][zero]

K[K]][I][inc]][K[I][inc]]][zero]
|
I[

] inc'::K[I [inc]]][zero

. (I[inc]]][K[I][inc]]][zero
:I:inc:]:[K[I][lnc]][zero
[inc]’ [inc]][K[I][inc]]][zero]
(inc]][S[K[inc]][I]][zero]
ine1lzerallSTKlinc11TT1Tzerol]

'm' 'm' 'm' 'm' 'x' 'm‘ 'm' H

A~ L nmunmunmunmonmoumonounmounmnonmxouo,m
x‘

ql’ LA L LA L LA L LR L L A
— xxxxxxxxxx

Watch how this tag system behaves when started with the string aabbbb, representing
the number 2:

aabbbb » bbbbaa
> bbaabbbb
> aabbbbbbbb (representing the number 4)
> bbbbbbbbaa
> bbbbbbaabbbb
> bbbbaabbbbbbbb
> bbaabbbbbbbbbbbb
2 aabbbbbbbbbbbbbbbb (the number 8)
> bbbbbbbbbbbbbbbbaa
> bbbbbbbbbbbbbbaabbbb

The doubling is clearly happening, but this tag system runs forever—doubling the
number represented by its current string, then doubling it again, then again—which
isn’t really what we had in mind. To design a system that doubles a number just once
and then halts, we need to use different characters to encode the result so that it doesn’t
trigger another round of doubling. We can do this by relaxing our encoding scheme to
allow c and d characters in place of a and b, and then modifying the rules to append
cc and dddd instead of aa and bbbb when creating the representation of the doubled
number.

With those changes, the computation looks like this:

aabbbb » bbbbcc
% bbccdddd
% ccdddddddd (the number 4, encoded with ¢ and d instead of a and b)

11 append the character 1 yes

11 append the characters 0010 yes
10010 append the characters 10 yes
001010 append the character 1 no
01010 append the characters0010 no

1010 append the characters 10 yes
01010 append the character 1 no
1010 append the characters 0010 yes
0100010 append the characters 10 no
100010 append the character 1 yes
000101 append the characters0010 no
00101 append the characters 10 no
0101 append the character 1 no
101 append the characters 0010 yes

010010 append the characters 10 no
10010 append the character 1 yes
00101 append the characters0010 no

Despite the extreme simplicity of this system, we can see a hint of complex behavior:
it’s not obvious what will happen next. With a bit of thought we can convince ourselves

WAL A S SNvAs lllul tIUI.\ILLLLmLJ \f&lullb\f AANSAALAALA RARAA T N WS uwuu, A AN N V\IL\J“’ u»wu;u;;;b BN A NAANN

that are triggered by the current state of the cell itself and the states of its neighbors.
The rules are simple: a living cell dies if it has fewer than two living neighbors (under-
population) or more than three (overpopulation), and a dead cell comes to life if it has
exactly three living neighbors (reproduction).

Here are six examples!! of how the Game of Life rules affect a cell’s state over the course
of a single step, with living cells shown in black and dead ones in white:

Voo

underpopulation overpopulation reproduction stability stability stability

o N
had A system like this, consisting of an array of cells and a set of rules for
| :‘ N updating a cell’s state at each step, is called a cellular automaton.

| o

ith

Interacting w

ial state consisting of a random pattern of

1nit

living and dead cells reveals all kinds of shapes moving around and

Alternatively, running rule 110 from an
each other

“
9 — ' - . . - . - - ' uuuuu
: 'r' R L L A L A
Rhshav s .r.r.".rrrr'. T e e e e s e s e e s e e s s s s s b L b L LA N
PR L .

SERSTRC R R _
. : O T o S A A A R R R A AR A R A A T A T AT AT AT AT AT AT AT AT
I R e RN T R R ey ¥ ¥ R O T T T R E e SR

A R A A A A A A R A A A A A A A A A A A AN
T S0 Y N U r'r.n'wrrr
Mol SRR TR N % ab S S S S S S O
o " e T s 5
" " ~ .e TS -

S S T T N U Y Yo

AR TR TATAT AR T AT AT IR NN

» S ﬂ'....-..r.rrr"rr..r..._.rr'.'r.!".’

NS A A S abatah .
A A AN

Nyt d ¥ 9 SO O o
. A S T ot e O O T U T
. . g At L L0 LY 7" AT AN AN
r"'r.or.....ﬁ'."" ..-r,p':,,.r.rr.r.rrrrrrrr ATATATA AT ATATAT .Po"".'.r.r St
o..'r'r..”:'r. r...'v.r"'wl.r A o O O O o O O O O O O O O e O OO e e O T S et et
e L A P OO S
O T S O O o o o e o o o o o o o oo o e

R N R N N N SN NN N I S I R NN S
ALATAT "'.W' "'."'..'.."o".n'....'..c"..""v...'..'..'..f..'..'..'..'..'..'..'..'..'..’..'..'. AU AR R R R
- - o AL LS TORTATA A .”" LYY """"""'"'""""'"""""""'1...

vrr
A A A A A A A A A A A A

~

b b e e e o A i A
..V'r”.ﬂ':: ALATR LR TRT AT AT IS "": St A abatabatatatabatatatabatatat o
X S T T T T e O T O R R "
A e e e e e e e s e e A e A A A A A A A e et g
e 4 N 4 Y N Y N e e e e P L
AL IR IR IR RN et At ab At atatatatatatang ' T
T T T T T e e oy oy o S A st 'm.rn.rrr,rr.,. R b AR RARARATARAY
T T rv rr rrr rrrrrrrrw.rJ..rrrrrr (RS 'r-n'r"Jn'r s * rr..rrr W...'rr. rrrr"r'r'r Eabatatatat
- N N » " ») »
At B T T S R T T T T Ty s
L o T, AMOAUALM v e M AUATAUATA
VI VI I IV ATCATATA A L R R AN

.
..... e os °e e AR R IR TARTR AT ATATAT AT AT AT AT ARSI A
Aot babatate et abatatatabatatal e .'.'.'r.r.'r.r_ﬂrrrrrrrrrrrrrrrrrrrr.:rrrrrr
:-.'r.rrrrrrr
N R TP e S Lty X Ly ...'V. LG AR et et el
AU OO OO o . Y SO
SO PG rn'r..'.'r-"‘r.'rr:r:' antan ot
A
......"'.'1'., s ." ™ LY OO AT "' Y (S S L
TN TG r' Ak Soaboababat A\ a d Sl Yo
1 Nl ST S S ST el R A A R A A A A A A A A A R R R R A A A A AT AT AT A AT AT R S S S
OOy !.' A L R R A A A L L R I TR T e
. .' I '

O S S O O O O O O O e e T T S S Y a Y . ‘
o ol o o 5 O W S T LS -~ AohL A 00 - AUALUALAL AL A Ayh b A Y
R T T et e S T e e e e o
Caht e R R A A A R At Attt somatatatatat ittt it
d o A A e A A
e N e ettt Attt
A A A R R T A R R R A
. A A R A A R A A A A A A S T L T .
A e A AN NN h oy LY s
: S OO s e b
A R R R R R A A e a a R a a R A AAAAAAN SATA TN
A A R A R A A A A T A A AN AT AT AT AT AT AT A T AT AT T ‘

.Vn..rr'..“'.r....r.rf......V.'"V"."V"77'77"'7'f"r”.mr..hrry.'fr..r
- R R o o o o o R R R o O o o O e X
T T T T R T T T T T T T T T R T T R T T L S N S S
""""""'f'"'"'....""'..."."o"v.'.'.'.."'
~ AR AT A TR AT A TATATATATATA T AT AT AT AT A TATAT AT AT AT AT AT oo T I Pl LT
T : = st AT
."- r'.Vr,r AR AT A A LA LA T A A T A T AT AT A Ta T A T ATt W T A TATATATATATATA TR AT R I R Sy
d N .:ro'r-'.'.r.rrrrrrr'r.'.'.'.'r'rrvr A A A A L I I s s s N s “aaL e b
3 ' T T S e TR et '.c".'. e et et ARt ATATA rrrrrrrrrrrrrr.rv'.r:r'.. N
d T NG T e
- Y R S N S e O N S S S S s
: LY s e R R AT AT AT AT AT ATATATATATATATATATATATATATATA
1 N e T S o L T Y W S S o
ACATA L T At
c'r......r"rrr.rrr.'f.r A ca b s ATATATATATATATATATATATATATATAT AL AT
1 O RSN IR TATATIATATAT L (NN o S A A A A A A A A A A A A A AN AN
N Sl e . N U OO O R O T a e e LA A
e ae b ‘s hh AR LA TR TR TR TR TR TR T IR IR TR AT TATA T AT AT ATATATATATATA AT
TR ey N g e L L S O O O O O S T O O e O OO OO
N\ o . s Rt At a At A At A AT AT A R AT AT AT AT AT AT AT AT AT AT AT AT
T GG A A R LR TR AT R TR A AT AT ATATA T A A AT AT AT AT AT AT AT ATA AT AT AT
e e TS A e e e kL
LI S 1 Y e e e o e L e e e e A e e e e e e S
L e 0 ST T ST TS e AT AT AT AT AT AT AT AT AT AT AT A A AT AT AT AT AT AT AT AT A,
"' L ".' LI Y v" .'.. ANARNARARAR AR LT 'r""" .'.'v"' R R R AL A AL AL AT A
T O A LT .. . bR ATATATAT A L U P O S
3 " » "" 'R T . AT A S ' o' AT
L. AR R r'.'.' SR U T S G o LS T Oe Eya w
% "".' a4 4 % g U Wi '00' e A e T T R Y v v AT
' N OO 5 P e N ed SIS r.'.'.'r.'..r...:rrrrrvrrrrr'. LS OIS e
- T e e S e G 'r. At eh b, e AEATATATATAL N NN B . ‘'
; O T T S e S S L Y S .
.'.-.".':...rr e S P S TR S S o L
' %

r.!!'....rrrrrrrrrrrrrrrrr'....rrﬂrrrrrr...!".'r...

A A o
. LY L el Sl S S e S e S Y e Y Y Y ae
SRR R AR AT R AT TR T AT R I At A T R AL AT A TATATATA T T A T A T AT hath s
(N'C r-r.'.."'.rrrr'rrrv.] r.rrrrrrrr".'.'!.’.': A A A A R A A A AR N TN
AU I .r.r..:.'.".""...nﬂrw NN ..W..”...v,r.rr.rr..r.,.r.7'."."V.V.VV'VJ...'M.V o

. . ")

N O 'r AR AT AR R R TR TR A A N BT S S o O S AU USSR r.'rr.

A .'rr. o N b e L L T T R A s s e e LA Lt A

L r....::..:V'.rrrrrrrrrrrrr.rrrrr... LM TATRCATATATATATALA "r.

A SRV RIACA R A AR R A A A A A A T A AT A AT AT AT AT L e SATATR LA AT AT T

N T T ST o r.rr.rr.rrrrrrrrrrrrrrrrrvrrr.rrrrrrrrrr.rrrrr'.....r T e ATATATATA X
e e A A A RN] SIS

A e R TR EATAT AT R AT R RS AT R RS RS ATI AT AT A TR T AT AT AT T AT '.'.'rr

- .rr.'.r"."'.r.rrr.r:. . SRR ATATATA T A SATATAT AT AL T ey

: L e A AR L 2 AR ATATATATAT A M ra T
< Ty :

ath At

: ATATATATATA

Ry A AT AT ATAT AT ATATATATATATA

AR RATATAT U ERTATATATATATATATATATATATATATA

e X MIATATATIN
R h ™At AT AT A
R Y N Y S O T T T T T T L
' N S '..".'O .'...'....'..’..'..'."."'.""""""" LS ""’ AL M .
S ST :.'. AR AT AT AT R AT AT AT AT AT AT AT AT AT AT AT AT AT
S R T e AARLALATR LA
bbb AT abababatatabatatat ittt it
A AR AT R ATAT AT AT AT ATATATATATATATATATAT
P L AR T AT AT AT R TATA T AT AT AT AT AT AT AR T AT AT AT AT AT
A ey S R AR ATAT AT AT ATATATATATATATATATAT AT A
i . '...'.r:".rv"_' A A A A A A A A AN NN
e b AT AT BTSN R T WA LATATATATATATATATATATATATATATATATATAT
,y AR RS R RE R R A TATA AT AT R R R R TATATATAT AT AT ATATATATATATATATATATAT AT AT
: rr.r..'.'.'..r..'.rrrrrrrrrrrrrrrrrrrrrr
LA TLS et .
an Ao A LY L

. ' - - ’ CIN VAt At
: . e A A A A N
R T T T U T O T o O e
. A e A AR e R R A A A A A A A A AN
S S o T R S e R e O A O O OO O oo oo e
"...r A A A e e a a a a a taatataa ta b atatat bt atatatat sy
R R e e e s s s s s s R s s s R s s s s s S A A A At AN
..."..."':rrrrrrrrrrrrrrr'rrrrr.rrrrrrrrrrrr.rrrrrrrrvrvrvrrrrrrrrrrrrrrrvrrrrrrrr'r'r'rrrrr
r.'.r!'.'.' R A R L L e s s s s s s s s A A AN
e L A A AN A AN AN
A A A N N
A RERN AR h ettt ettt pt bt bttt tatatatatatatabatatatatatatatatatatatats
'--.' e L Sl e A N N S e A A A A AN
O T R T oo oo A R R A A A AT R T R TR TR AR T AT AT AT AT AT AT AT AT A AT AT A
"'......r.r’r.'ro'r'.'rr' TS L S T . aa Ak »
. ALY :

Ly

AN : - O ATRCATAATA AIATATATATA ATA
T T T T o e T S e T T e e S Y Y Y Y Y Y &
A S S LT Y .'.'v'. ' N s 'o" (Sl T T T T '."'0" SO SR SR BER SRS SR SIR SER LA S IR SRS o8
Mab e hatihes . T T ST Y D e N i o T T T T T O S O OO OO OCH
TR AT R L TNy TN YN YL " LT O AR AT R TATAT AN ATATAT AT AT ATATATAT A
R TR AT & WY 9 it e ARt A AN A At atatatatat ataa
'.' " - .-.'. 7 .’r.."c AL W WSS '.t'.'.'o' a .'.."......"""v ok ".."""""""""
'r’."....."..ﬁ'] .'0 'o""r"'o...' s '.F' '...'Pv r' LYY T G ..r"".'.'.r'...rr.rr".PI." ..." 'or '.?' " " " r' r'
N & Y - TS 133 IR NIN NS v . Y . - SRS ATATATA
".'."'...'.."7..'..700. o "..."...."""""""'.."p'.v. '.." Attt """'..""..'"..'v"..’."" Ao
sy o AT A "'.""'f"""'""... ""'.""""'.'..."9'.'
.""" b S "..' (% ."'.' AR A AN AN AT ™ SN .'.'."" """""" ..."" . T
s N Y Y S e O T e e S T T S P T O e o oy
NI TR T TR O e SO O T o L T S O U T T i, it
'.."v' MohLh L . ass b v W] ST T S R ..'r"l'. At At A A oA
L

» .a ' - ..
N St N R R R R AT - TS At T o e e
. 'rr' 'w..'r.- 'r'rp’ N Cr "'rr' rr...r'J..r.rW..'rr ok 'rrrrvrrrr'r S r.r'r.rrrr.rﬂrrrrﬂ.r'rr'r..rf.r'..vrrr'rw r.rrrrrrrr'rrrrrr
e g R e T ey S S T L e T g

. [X o ot
. > : NS P S A U O] O L e O ey
LY . - '."' A "' " " . ""'. "' AR !. .0!. . ASATATA L .o " "'..' -~
ERRROORE Sl i Sl S S N et r.'r.'v..'.rr o T r..r:r’. O O A S OO O O e e
T O T Y o SN N s e S e e L d U T, e S e
: abalbatab b oo BT T S T e T LT T O O T A T L ST L e o
R T U L e o LT Y e O] T O s a g ua
: A b L R AR RN o ST T S O O T4 N S e LY L
S U S O O e e e e e O O O O O O O O e e O e et has
e A R AR A R T R T R TR T AR R R R L AT A A T A T A TR T R TR T A TA T O RT R R TR TR L L R LR e T
. bbbt atatatatatatatacc nabatadatabatatatabatoabate b e atat o bl ik Wk
AR A A A AT AT AT AT ATATATAT AT AT A AT S T T T o e e "
_.rr.' A A ATt AT AT AT A AT AT AT AT AT AT T T T T T Ly o e ~
atta AR AT A AT AT AT AT AT A T A AR AT TR R TR T
A RTRTARAN R R LA AR AN AN AR AN AN ~ A A A O GGG O
e ababababe et et atatatatatah sababat ATttt at ettty
b atatatatatatu i p et atatatatats At Attt et atatatatatatat
LY s A A A A A R A A A AN
A AT R A A AR AT ATAT AR LR AR AT AT AT A
T Ot o T e Ly o hababababatat bkt atatatt
e LA TR T AT AT AT IR TATA T Lk "Prrrrrrrlrrrrrrrrr.lr,r.rrrrrrr
R R AR A A AN A AN AN A AL N R N S S ST ST ST ST T ST T T
TR ATAT R AT SATATATATATI TS . . ol S ST ST AT T
N TSN S A A R AL ATAaTATataTATATATA A A ATat
Rt Rr A AR A AT A TR T AT A OO O OO O O

def halts?(program, input)
if program.include?('while true')
if program.include?('input.include?(\ 'goodbye\')")
if input.include?('goodbye")
false
else
true

end
else

false
end
else
true
end
end

Now we have a checker that gives the correct answers for all three programs and any
possible input strings:

>> halts?(always, 'hello world')

=> true

>> halts?(never, ‘hello world')

=> false

>> sometimes = "input = $stdin.read\nif input.include?('goodbye’)\nwhile true\n<
do nothing\nend\nelse\nputs input.upcase\nend"

=> "input = $stdin.read\nif input.include?('goodbye’')\nwhile true\n# do nothing\n<
end\nelse\nputs input.upcase\nend"

>> halts?(sometimes, 'hello world')

=> true

>> halts?(sometimes, 'goodbye world')

=> false

def +(other sign)
if self == other sign || other sign == ZERO
self
elsif self == ZERO
other sign
else
UNKNOWN
end
end
end

This gives us the behavior we want:

>> Sign::POSITIVE + Sign::POSITIVE
=> #<S5ign positive>

>> Sign::NEGATIVE + Sign::ZERO

=> #<5ign negative>

>> Sign::NEGATIVE + Sign::POSITIVE
=> #<Sign unknown>

In fact, this implementation happens to do the right thing when the sign of one of the
inputs is unknown:

>> Sign::POSITIVE + Sign: :UNKNOWN

=> #<Sign unknown>

>> Sign::UNKNOWN + Sign::ZERO

=> #<Sign unknown>

>> Sign::POSITIVE + Sign::NEGATIVE + Sign::NEGATIVE
=> #<Sign unknown>

We do need to eo back and fix un our implementation of Sient#t*. thoueh. so that it

AU SS2 WNS2 00000

def type(context)
if left.type(context) == Type::NUMBER && right.type(context) == Type::NUMBER
Type: :BOOLEAN
end
end
end

This lets us ask for the type of expressions that involve variables, as long as we provide
a context that gives them the right types:

>> expression = Add.new(Variable.new(:x), Variable.new(:y))

=> «X + y»

>> expression.type({})

=> nil

>> expression.type({ x: Type::NUMBER, y: Type::NUMBER })

=> #<Type number>

>> expression.type({ x: Type::NUMBER, y: Type::BOOLEAN })
=> nil

That gives us implementations of #type for all forms of expression syntax, so what
about statements? Evaluating a SiMpLE statement returns an environment, not a value,

so how do we express that in the static semantics?

The easiest way to handle statements is to treat them as a kind of inert expression:
assume that they don’t return a value (which is true) and ignore the effect they have on
the environment. We can come up with a new type that means “doesn’t return a value”
and associate that type with any statement as long as all its subparts have the right
types. Let’s give this new type the name Type: :VOID:

class Type
VOID = new(:void)

Tom Stuart

From Simple Machines to Impossible Programs

ol§
k=
o

-

Q!
)

90

—

U
E
-

O’REILLY"

ionbook.com

computat

I‘

@tomstuart / tom@codon.com / computationbook.com

IIIIIIIIIIII Oto
SOFTWARE DEVELOPMENT

CONFERENCE 2015 conference

Questions?

Please remember to evaluate via the GOTO
Guide App

3 foliow us @gotochgo Conference: May 11-12 / Workshops: 13-14

