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What's in it for you?

You will get a better understanding
of what a data scientists does

©2013 LinkedIn Corporation. All Rights Reserved.

12



What's in it for you?

You will get a better understanding
of what a data scientists does

You will learn about how hard
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What's in it for you?

You will get a better understanding
of what a data scientists does

You will learn about how hard
cleaning data can be

You will learn why Linkedln needs
endorsements
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1
. LinkedIn’s Vision
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Create economic opportunity for
every professional in the world
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Computing Professional Identity




Why Do We Need Identity Standardization?
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Why Do We Need Identity Standardization”?

LinkedIn Essentials
The Modern Recruiter's Guide




Why Do We Need Identity Standardization?

OR

If you would like to broaden your search to find profiles
which include one or more terms you can separate those
terms with the upper-case word OR.
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“Pitney Bowes” OR “Hewlett-Packard”

Helpdesk OR “Help Desk” OR “Technical
Support”

“Vice President” OR VP OR “V.P.” OR SVP OR EVP
J2EE OR “Java Enterprise Edition” OR JEE OR JEES
"account executive" OR "account exec” OR
"account manager” OR "sales executive” OR
"sales manager"” OR "sales representative™
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UNSTANDARDIZED DATA
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Text Based Solution

Applies acronym expansion (e.g. vp -> vice president)
Applies abbreviation expansion (e.g. sr. -> senior)
Select the most common standard titles

= Selects standard sub strings (e.g. software engineer and tech lead
in search -> [software engineer, tech lead])
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Problems with a Text Based Approach
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Problems with a Text Based Approach

©2013 LinkedIn Corporation. All Rights Reserved.

32



Problems with a Text Based Approach
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Classification
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Selected Topics




Normalization
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Normalization

W, =

Term x within document y

tf, , x log (—,

N
df,

tf_  =frequencyof xiny

X,y

)

df = number of documents containing x
N = total number of documents
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Clustering
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Clustering

Topics

Documents

Topic proportions and
assignments
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« Each topic is a distribution over words
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Anomaly Detection
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Anomaly Detection
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Anomaly Detection
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Summary

User generated content from 300M
members, creates 300M problems
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Summary

User generated content from 300M
members, creates 300M problems

Data cleaning is so much more than
filtering out empty values
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Summary

User generated content from 300M
members, creates 300M problems

Data cleaning is so much more than
filtering out empty values

Try to be creative and work around
difficult language problems
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