The Verification of a
Distributed System

7l ‘Practitioner’s Guide to ‘Increasing Confidence in System Correctness

C0M

Ird |

Caitie McCaffrgy
istributed oystems Engineer

.---Q

L]
sggeeat?
s34

::::u»:_

“A Distributed Syatem is one in which
the failure of a computer you didn't even
know existed can render your ocwn
computer unusable”

LESLIE LAMPORT

We e 000000

What the hell have you built.

« Did you just pick things at random?
= Why is Redis talking to MongoDB?
« Why do you even use MongoDB? ¥riak

’ omongolm
Goddamnit Nevermind

9 redis - openstack

dmazoncom
o ber i re
e

.
N

Overview

Formal Verification
‘Provably Correct Systems

Testing in the Wild
Increase Confidence in system Correctness

Research
71 New Hope

® 0CaitieM20/TheVerificatior X

& C | £ GitHub, Inc. [US] https://github.com/CaitieM20/TheVerificationOfDistributedSystem

The Verification of a Distributed System

Accompanying Repository for The Verification of a Distributed System Talk to be given at GOTO C

Abstract

Distributed Systems are difficult to build and test for two main reasons: partial failure & asynchron
distributed systems must be addressed to create a correct system, and often times the resulting s
degree of complexity. Because of this complexity, testing and verifying these systems is critically |

R f r n will discuss strategies for proving a system is correct, like formal methods, and less strenuous me
help increase our confidence that our systems are doing the right thing.
References

e The Verification of a Distributed System

e Specifying Systems

e Use of Formal Methods at Amazon Web Services
e Simple Testing Can Prevent Most Critical Failures

Property Based Testing
o Haskell: Quick Check
o Erlang: Quick Check
o Other Quick Check Implementations
o ScalaCheck
o 29 GIFs only ScalaCheck Witches will Understand

Safety & Liveness

Formal
Verification

Formal
erification

~ i’"

!;Q 4
FAYS: Bl I BN BN B B _Em
vl '.A I.

- v,
ooty b AL A
~~ " X

:
>

Formal Specifications

‘Wrilten deacription of what a aystem s supposed to do

T(Iil'l'

“Its a good idea to underatand a system

before building it, 0 s a goed idea to write

a apecification of a aystem before
mplementing it”

‘-j Leslie Lamport, Specifying Systems

% T+ Hour Clock Specification Yk

MODULE HourClock
EXTENDS Naturals
VARIABLE hr

HCini == hr \in (1 .. 12)
HCnxt == hr'’ = IF hr # 12 THEN hr + 1 ELSE 1
HC == HCini /\ [][HCnxt] hr

THEOREM HC => []HCini

Leslie Lamport, Specifying Systems

Use of Formal Methods at Amazon Web Services

Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, Michael Deardeuff
Amazon.com

29" September, 2014

Since 2011, engineers at Amazon Web Services (AWS) have been using formal specification and model
checking to help solve difficult design problems in critical systems. This paper describes our motivation
and experience, what has worked well in our problem domain, and what has not. When discussing
personal experiences we refer to authors by their initials.

At AWS we strive to build services that are simple for customers to use. That external simplicity is built
on a hidden substrate of complex distributed systems. Such complex internals are required to achieve
high availability while running on cost-efficient infrastructure, and also to cope with relentless rapid
business growth. As an example of this growth; in 2006 we launched S3, our Simple Storage Service. In
the 6 years after launch, S3 grew to store 1 trillion objects '*.. Less than a year later it had grown to 2
trillion objects, and was regularly handling 1.1 million requests per second '2.

S3 is just one of tens of AWS services that store and process data that our customers have entrusted to
us. To safeguard that data, the core of each service relies on fault-tolerant distributed algorithms for
replication, consistency, concurrency control, auto-scaling, load balancing, and other coordination tasks.
There are many such algorithms in the literature, but combining them into a cohesive system is a major
challenge, as the algorithms must usually be modified in order to interact properly in a real-world \ |
system. In addition, we have found it necessary to invent algorithms of our own. We work hard i hid

unnecessary complexity, but the essential complexity of the task remains high. ‘\\\i*\i::;;f:\\ ,,,,,;;z/"'?/

High complexity increases the probability of human error in design, code, and operations. Err/ PN

core of the system could cause loss or corruption of data, or violate other interface contract: an Wthh

our customers depend. So, before launching such a service, we need to reach extremely hlgh confldence

% Tl

S3 & 10+ Core Pieces of
Infrastructure Verified

2 Serious Bugs Found

Increased Confidence to make
Optimizations

Applying TLA+ to some of our more complex systems

(excl. comments)
network algorithm PlusCal in proposed optimizations.

Background redistribution of Found 1 bug, and found a bug in
data PlusCal the first proposed fix.
membership system TLA+ traces of 35 steps
Internal Lock-free data structure 223 Improved confidence. Failed to
distributed PlusCal find a liveness bug as we did not
lock manager check liveness.
Fault tolerant replication and Found 1 bug. Verified an
reconfiguration algorithm TLA+ aggressive optimization.

Use of Formal Methods at Amazon Web Services

“Formal methods deal with
- models of systems, not the :
systems themselves’ '

Use of Formal Methods at Amazon Web Services

Systems Testing
in the ‘Wild

“Seems Pretty Legit”

Unit Tests

Teating of ‘Individual dSoftware
Components or Modules

. 1 Short Counter txample

I /%

I x Add two numbers together

I def Add (x: Int, y: Int):Int = {
' xx*y

' B

i

: Add(4, 3) Scala

CARE ABOUT
E E
WPE SYSTEM \

YOUR

FE B e D w.

Integration Tests

Teating of integrated modules to
verify combined functicnality

Simple
Testing Can

Prevent
Most Critical
Failures

Simple Testing Can Prevent Most Critical Failures

An Analysis of Production Failures 1n Distributed Data-intensive Systems

Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao,
Yongle Zhang, Pranay U. Jain, Michael Stumm
University of Toronto

Abstract

Large, production quality distributed systems still fail pe-
riodically, and do so sometimes catastrophically, where
most or all users experience an outage or data loss. We
present the result of a comprehensive study investigat-
ing 198 randomly selected, user-reported failures that oc-
curred on Cassandra, HBase, Hadoop Distributed File
System (HDES), Hadoop MapReduce, and Redis, with
the goal of understanding how one or multiple faults
eventually evolve into a user-visible failure. We found
that from a testing point of view, almost all failures re-
quire only 3 or fewer nodes to reproduce, which is good
news considering that these services typically run on a
very large number of nodes. However, multiple inputs
are needed to trigger the failures with the order between
them being important. Finally, we found the error logs
of these systems typically contain sufficient data on both
the errors and the input events that triggered the failure,
enabling the diagnose and the reproduction of the pro-
duction failures.

We found the majority of catastrophic failures could
easily have been prevented by performing simple testing
on error handling code — the last line of defense — even
without an understanding of the software design. We ex-
tracted three simple rules from the bugs that have lead to
some of the catastrophic failures, and developed a static

checker, Aspirator, capable of locating these bugs. Over
209, nf the catactronhic faitlniree wonld have heen nre-

raises the questions of why these systems still experi-
ence failures and what can be done to increase their re-
siliency. To help answer these questions, we studied 198
randomly sampled, user-reported failures of five data-
intensive distributed systems that were designed to tol-
erate component failures and are widely used in produc-
tion environments. The specific systems we considered
were Cassandra, HBase, Hadoop Distributed File System
(HDES), Hadoop MapReduce, and Redis.

Our goal 1s to better understand the specific failure
manifestation sequences that occurred in these systems
in order to identify opportunities for improving their
availability and resiliency. Specifically, we want to bet-
ter understand how one or multiple errors! evolve into
component failures and how some of them eventually
evolve into service-wide catastrophic failures. Individual
elements of the failure sequence have previously been
studied in isolation, including root causes categoriza-
tions [33, 52, 50, 56], different types of causes includ-
ing misconfiguraitons [43, 66, 49], bugs [12, 41, 42, 51]
hardware faults [62], and the failure symptoms [33, 56],
and many of these studies have made significant impact
in that they led to tools capable of identifying many bugs
(e.g., [16, 39]). However, the entire manifestation se-
quence connecting them is far less well-understood.

For each failure considered, we carefully studied the
failure report, the discussion between users and develop-
ers, the logs and the code, and we manually reproduced

98% of Jailures

Simple Testing can Prevent Most Critical Failures

prevented 03% of
catastrophic failures

Simple Testing can Prevent Most Critical Failures

Error Handling Code is simply empty or
only contains a Log statement

30% of
Catastrophic
Tailures

Error Handler aborts cluster on an overly
general exception

Error Handler contains comments like
FIXME or TODO

Simple Testing can Prevent Most Critical Failures

Property Based
Testing

QuickCheck : ScalaCheck

Haskell Scala
& &
Erlang Java
languages with Quick Check Ports:

C, C++, Clojure, Common 1iap, cm, T+, G, Go, Javascript, Node.js, Objective-C, 0OCaml, Perl,
‘Prolog, PHP, ‘Python, R, (Rubg ‘Ruat, Scheme, Smalltalk, StandardM, Swift

org.scalacheck. _

smallInteger = Gen.choose(9,100)
propSmallInteger = Prop.forAll(smallInteger) { n =>
n > 0 & n <= 100

}

org.scalacheck. _

propReverseList = forAll { l:List[String] => l.reverse.reverse == 1 }

Fault Injection
Tntroducing faults into the system under test

, o Q,_. .

A - -

. Y .

¢ iy ‘&:l‘,\‘r.
PRl ey -

. : Ic L‘:“-":’) 4

N ..-‘ 0
v </ ’ . .21
. '-:\7‘ v . ,~\:“.,-..-
. C e TSR BT
™ l,.“ .:O ICra'v; -
« - e
S 4,
. ’W'_-'- -
LT AR SR
’ ' n

“Without explicitly forcing a system
to fail, it is unreasonable to have any
confidence it will operate correctly
in failure modes’

-‘The Verification of a ‘Distributed dystem

- o B B B B B B B NN
¢ & & .

‘Netflix dStimian flrmy

- Chaos Monkey: kills instances

- Latency Monkey: artificial latency
induced

- Chaos Gorilla: simulates outage
of entire availability zone.

Fault Injection Tool
that simulates
network
partitions in the
system under test

Fault Injection Tool
that simulates
network
partitions in the
system under test

CAUTION: Passing Tests

Does Not Ensure Correctness

‘Breaking your services on purpoae

Resilience Engineering: Learning to Embrace Failure

‘How to ‘Run a GameDay

1. Notify Engineering Teams that Failure is Coming

2. Induce Failures
3. Monitor Systems Under Test

4. Observing Only Team Monitors Recovery Processes
& Systems, Files Bugs

™ 5. Prioritize Bugs & Get Buy-In Across Teams |
'. s | 2 Il E N | I N ___ __pa | '- | k., :‘- | | ‘ L e .

“During a recent game day, we
tested failing over a Redis cluster by

running kill -9 on its primary
node, and ended up losing all
data in the cluster”

n Kelly Sommers ': ‘ ollowing

If there's anything to learn from this Redis
problem, even a simple kill -9 test needs to

happen more often in our industry.

31 35 LBENORBER =& 5

Game Day Exercises at Stripe: Learning from kill -9

* Some thoughts on
ESTING IN

RODUCTION

MONITORING
1) Nol
TESTING

CANARIES

“Verification™ in production

Verification
in the gl
Wil
Unit & Integration Tests

Canaries

Research

Improving the Verification
of ‘Distributed Syastema

* k&

Lineage Driven Fault Injection

‘Cause I'm Strong Enough:
‘Reascning about Conasistency Choices in ‘Distributed Systems

lronFleet:
‘Proving ‘Practical ‘Distributed Systems Correct

Towards Property Based
Consistency Verification

Lineage-driven Fault Injection

Peter Alvaro
UC Berkeley

palvaro@cs.berkeley.edu

ABSTRACT

Failure is always an option; in large-scale data management sys-
tems, it is practically a certainty. Fault-tolerant protocols and com-
ponents are notoriously difficult to implement and debug. Worse
still, choosing existing fault-tolerance mechanisms and integrating
them correctly into complex systems remains an art form, and pro-
grammers have few tools to assist them.

We propose a novel approach for discovering bugs in fault-tolerant
data management systems: lineage-driven fault injection. A lineage-
driven fault injector reasons backwards from correct system out-
comes to determine whether failures in the execution could have
prevented the outcome. We present MOLLY, a prototype of lineage-
driven fault injection that exploits a novel combination of data lin-
eage techniques from the database literature and state-of-the-art
satisfiability testing. If fault-tolerance bugs exist for a particular
configuration, MOLLY finds them rapidly, in many cases using an
order of magnitude fewer executions than random fault injection.
Otherwise, MOLLY certifies that the code is bug-free for that con-
figuration.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed Databases

Keywords

fault-tolerance; verification; provenance

Joshua Rosen
UC Berkeley

rosenville@gmail.com

Joseph M. Hellerstein
UC Berkeley

hellerstein@cs.berkeley.edu

enriching new system architectures with well-understood fault tol-
erance mechanisms and henceforth assuming that failures will not
affect system outcomes. Unfortunately, fault-tolerance is a global
property of entire systems, and guarantees about the behavior of
individual components do not necessarily hold under composition.
It is difficult to design and reason about the fault-tolerance of indi-
vidual components, and often equally difficult to assemble a fault-
tolerant system even when given fault-tolerant components, as wit-
nessed by recent data management system failures [16, 57] and
bugs [36,49].

Top-down testing approaches—which perturb and observe the
behavior of complex systems—are an attractive alternative to veri-
fication of individual components. Fault injection [1,26, 36,44, 59]
is the dominant top-down approach in the software engineering
and dependability communities. With minimal programmer in-
vestment, fault injection can quickly identify shallow bugs caused
by a small number of independent faults. Unfortunately, fault in-
jection is poorly suited to discovering rare counterexamples in-
volving complex combinations of multiple instances and types of
faults (e.g., a network partition followed by a crash failure). Ap-
proaches such as Chaos Monkey [1] explore faults randomly, and
hence are unlikely to find rare error conditions caused by cc plex
combinations of failures. Worse still, fault injection technj?"' s—
regardless of their search strategy—cannot effectiv.
coverage of the space of possible failure scenarios. Fi. s
such as FATE [36] use a combination of brute-force © . 1
heuristics to guide the enumeration of faults; such heur. G sear\,

ctrateagiec cran he affertive af 11nenverinoe rare fatliire eceenarine it

o G D (D

~

~
~_m s m m C

m |

- . . CRASHED

Figure 10: The replication bug in Kafka. A network partition causes b
and c to be excluded from the ISR (the membership messages (m) fail to
reach the Zookeeper service). When the client writes (w) to the leader a,
it 1s immediately acknowledged (a). Then a fails and the write is lost—a
violation of durability.

Lineage-driven
Fault Injection

Distributed Tracing + FIT To
construct call graphs

Metric Systems to Determine
if Call was a Success

Used FIT to Inject Failures
determined by Molly

“Monkeys in Lab Coats™: Applied Failure Testing Research at Netflix

Conclusion

Use Formal Verification on
Critical Components

Unit Tests & Integration Tests find a
multitude of Errors

Increase Confidence via Property
Testing & Fault Injection

N

AL

“Enjoy the ride, have fun, and £
test your freaking code

w

,ﬂ |
i N L
b

1‘1

Thank You

Peter Alvaro
Kyle Kingsbury

Christopher

Meiklejohn

Alex Rasmussen
ITnes Sombra
Nathan Taylor

Alvaro Videla

Questions

Reaources:

http://github.com/CaitieM20/
TheVerificationOfDistributedSystem

Yy @caitie

http://github.com/CaitieM20/TheVerificationOfDistributedSystem

