
PRESENTED BY: Ivan Dwyer - Head of Business Development

Buzzwords: Microservices, containers and serverless
PRESENTED BY: Dave Nugent - Developer Advocate

Why Serverless

About Me

⬢ CMU alum

⬢ Astrobiology at NASA

⬢ Consultant to PayPal, Kaiser Permanente, Deutsche Börse
Group, SETI Institute

⬢ SF JavaScript, SF IoT meetups; ForwardJS, Forward Swift

⬢ Joined Iron.io March 2016

Dave Nugent | Dev Advocacy

@drnugent

What We Do

Iron.io delivers Docker-based

job processing as a service

for modern enterprises

70% of IT processes still performed in batch - Gartner

4

File Processing

Data Processing

ETL

5

The Evolution of Deployed Application

Server VM Container

Monolith N-Tiered Microservices

Major Release Software Updates Continuous Delivery

Unit of Scale

Application Architecture

Deployment Model

DIY Software Defined Event-Driven

Workload Processing

We are leading the Enterprise towards a “serverless” computing world

Impact on Organizations

6

Smaller single purpose
services Agile Teams

Independently developed and
deployed components Shorter release cycles

Lightweight cloud-native
communication and processing Cost efficient scaling

Standardizing on Containers No vendor/tech lock in

Technology Business

First: Let’s look at the Most Recent Paradigm

7

Why are we still doing this?

8Source: http://www.slideshare.net/lkysow/monolith-to-microservices-lessons-from-the-trenches

One Hypothesis: Cultural Constructs
“Any organization that designs a system
(defined broadly) will produce a design
whose structure is a copy of the
organization's communication
structure.”

-- Melvyn Conway, 1967

9Credit: http://martinfowler.com/articles/microservices.html

Point of Interest: Legacy Players Flexible

10Source: http://www.slideshare.net/lkysow/monolith-to-microservices-lessons-from-the-trenches

Application & Platform Evolution

Photo courtesy Peter Wagner, Wing.vc

Application & Platform Evolution

Photo courtesy Peter Wagner, Wing.vc

Virtualization & Cloud

● Decoupled hardware
and software

● Software-driven
hardware

Application & Platform Evolution

Photo courtesy Peter Wagner, Wing.vc

Microservices

● Trust and policy between
distributed services

● Horizontally scalable
applications built for cloud

Application & Platform Evolution

Photo courtesy Peter Wagner, Wing.vc

Containers

● Allow extremely higher
efficient sharing of resources

● Provides standard and
minimizes software packaging

● Further decouples software
from underlying host w/ no
hypervisor

Application & Platform Evolution

Photo courtesy Peter Wagner, Wing.vc

Serverless

19

Workloads: Legacy vs Serverless

Pushed

Running

Requested

Load Balanced

Elastic

Uploaded

Ephemeral

Triggered

Queued

Concurrent

Legacy App Serverless Job

Job-centric workloads have a different behavior than app-centric workloads

Event Driven

● Evented invocation of function/worker/task
● Producer to consumer one-way invocation
● Fire and forget model

Containerized

● Skip the virtual machine
● Microcontainers reduce network traffic

○ Alpine Linux, CoreOS, etc.
● Code becomes ultra-portable abstracting

server and VM
● iron.io/microcontainers-tiny-portable-containers/

Composable

● Serverless roots grounded in SOA
● 3rd party providers bring scalable component

code
● Examples: Algolia, Algorithmia, Cloudinary,

Auth0, DynamoDB, on and on and on.

Workload Aware

● Understanding of the workload
characteristics and properties

● Allows for self-healing and directing of
workloads across specialized infrastructure

Colossal Clusterf**k Visualized

Developer Empowerment

● Moves the abstraction level up
● Spend more time on feature code
● Implement and extend 3rd party code

Organizational Impact

Smaller single purpose
services Agile Teams

Independently developed and
deployed functional

components
Shorter release cycles

Lightweight cloud-native
communication and processing Cost efficient scaling

Standardizing on Containers No vendor/tech lock in

Technology Business

Organizational Impact

Speed / Time to Market

Ability to respond to market demands

Serverless Platforms

AWS Lambda

● Pros
○ Native integration with all other AWS services
○ Scales nicely
○ Cheap

● Cons
○ Native integration with all other AWS services
○ Stuck with their machine images
○ IAM

Google Cloud Functions

● Pros
○ Integration to strong machine learning tools
○ Generally better performance per dollar

● Cons
○ TBD - We don’t know yet

Microsoft Azure Functions

● Pros
○ Private cloud support
○ Quickly innovating service feature set

● Cons
○ Azure

Iron.io

● Pros
○ Supports all public/private clouds
○ Docker-based w/ rich API

● Cons
○ More work to build triggers

● Isn’t serverless computing impossible?

FAQs

● Aren’t the servers just managed by someone else?

FAQs

● Aren’t the servers just managed by someone else?

FAQs

● If these aren’t just buzzwords, how do I use them?

FAQs

http://go.iron.io/serverless-computing-white-paper

Just Published: Serverless White Paper

The Future is of Serverless

39

Iron.io

325 9th St

San Francisco, CA 94103

1-888-939-4623

www.iron.io

dave@iron.io

Questions?
@drnugent

http://go.iron.io/serverless-computing-white-paper

http://www.iron.io
http://www.iron.io

40

Docker-Based Workflow

Build Upload Run Scale

Developers

Build lightweight, single
purpose jobs in any language

Containerize with Docker and
upload to a repository

Automated execution on
event trigger

Runs and scales without the
need for provisioning

To the developer, working with Iron.io is a “serverless” experience

The Iron.io Platform

41

Compute Storage Networking

Container Orchestration

IaaS
Raw Resources

IaaS
Container Services

Container
Management

Workload
Distribution

Intelligent
Autoscaling

PaaS
Workload Optimization

IronWorker
Job Processing

IronMQ
Message Queue

IronCache
Key/Value Data Store

PaaS
Core Components

Administrative
Dashboard

Role-Based
Access Controls

Advanced
Reporting

SaaS
Management

Value Line

Abstraction Line

APISaaS
Developer Interface

Key Features

42

Queuing Jobs
Once your code is uploaded, you can

queue up jobs and Iron.io handles the
provisioning and execution.

Scheduling Jobs
Scheduling API replaces CRON with an

HA service that withstands node
failures.

Job Priorities
Includes a built-in priority manager,

allowing users to set the importance of
specific jobs to be run.

Webhooks
Create event-driven workflows between

APIs, services, and endpoints through
an HTTP POST callback.

Logging
STDOUT captured for every job and
exposed via API and dashboard, and

can stream to syslog or 3rd party

Failure Handling
Job state change provides error and
timeout handling, with alerting and

auto-retry capabilities.

43

Why Businesses Choose Iron.io

“Serverless” Experience
Power large-scale workloads without the need to provision and
manage infrastructure.

Multi-cloud Portability
Container-based to allow for flexible and portable workloads
that can be run on any cloud of choice.

Developer Friendly
Cloud-native REST API with client libraries across all major
languages.

Speed to Market
Operates as a service and can be easily integrated with various
platforms and services.

Workload Scalability
Scale effectively and efficiently at the task level through
lightweight and loosely coupled containers.

Hybrid Capable
Deploy components and distribute workloads to any cloud
environment, public or private.

44

Popular Use Cases THIS SLIDE IS NOT FOR PUBLIC
CONSUMPTION

