
Lies, Damn Lies
and Benchmarks:
How to Accurately Measure

Distributed Application Performance

Heinz Schaffner

Science	Projects
vs.	Production
Testing	to	
Destruction
vs.	Distressed	
Processing

• Latency
• Schemes	for	

generating
test	data

• Persistence	Issues

Accuracy	vs.	Precision

oJava	nanoTime()
Nanosecond	precision,	not	resolution

ocurrentTimeMillis()
Granularity	depends	on	OS

oNetwork	Analyzers
Measure	latency	over	the
wire	not	“API	to	API”

Myth:
“You	cannot	
accurately	get	
per	Message	
Event		Time	
Stamps”	

oMany	vendors	hide	jitter
o C	or	JNI	call	will	give	precise
time	using	TIC	Register:
#elif _LINUX_X86_64

if (USE_CLOCK_TICKS) {

UINT32 hi, lo;

__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));

return ((UINT64)lo)|(((UINT64)hi)<<32);

} else {

return getTimeInUs();

o Only	store	values	of	interest	in	pre-defined	
array	and	do	calculations	or	save	data	at	end	of	
test	(10-13	ns/per	record)

o Host	setup	and	tuning	have	huge	affect	on	
system-induced	processing	overhead

o Accuracy	affected	by	time-stepping	
hardware	interrupts,	etc.

o Use	benchmarking	as	chance	to	review	
host	and	network	tuning.

Myth:
“Using	
Production	
Tuning	to	run	
benchmark
will	provide	
production	
comparison	of	
vendors”	

o OpenStack	VM	took	12%	longer	to
complete	test	with	4	vCore and	8	Gig	VM

o For	this	test	Cloud	hosts	were	idle

o Can’t	tune	VM

Myth:
“Applications	in	
the	cloud	will	
have	same	
performance	as	
in	bare	metal	
hosts”	

o “/proc/interrupts”	shows	all
network	hardware	interrupts	are	on	CPU2

o Don’t	run	or	benchmark	distributed
applications	on	high	interrupt	cores

Why	does	no	
one	worry	
about	CPU	
affinity	when	
testing	or	in	
production	–
alternative	to	
VM?

Idle latency test on CPU2 and CPU3
while CPU1 does file transfer

Idle Latency
on CPU2

Idle Latency
on CPU3

o Distributed	systems	=
linked	chain	of	queues	and	buffers.

o Each	vendor	provide	customer	processing

o Getting	Timestamp	Delta	when
Producer is	done	shows	no	jitter

API
Event Queue

Data
Producer

Host
TCP
Buffer

API
Event Queue

Data
Consumer

Host
TCP
Buffer

Broker

Vendors	love	
tests	that	
Timestamp,	
send	Test	Data,	
Timestamp	and	
divide	total	by	
Timestamp	
Delta	

Skewing	of	
Results	Using	
Timestamp	
Delta	
Technique

TCP	and	Broker	Buffers

oMassive	Buffers
Leaves	unprocessed	data	uncounted.

oPersistent	Queues
benchmarking	 with	messages	still	in	queue

oUnidirectional	tests
vs.	bidirectional	 reality

oShared	Broker	Access
w/	no	background	 load	on	 the	broker

API	Event	Queue

o Huge	Buffers
Varies	by	vendor	and	
usually	tunable,	 can	show	
throughput/rate	 50%	
higher	 than	reality

o Nagle-like	
Processing
Outbound	 delay	buffering	
with	vectored	send.	Only	
works	if	back-to-back	sends	
and	test	to	destruction

o Buffered	write	skews	
benchmarks

o Synchronous	writes	
slower	by	80%

o Read	first	from	file	
cache	and	goes	to	
disk	if	no	cache	hit

o File	cache	can	affect	
hosts	as	memory	
becomes	scarce

Application

Operating
System

Hardware

write()

File Cache

read()

Disk

Persistent	
Messaging’s	
dirty	little	
secret(s)

o Most	vendors	use	buffer	writes	as	default

o Slow	consumers	result	in	read	cache	misses

o Synchronous	writes/reads
- Pre-emptive

- Interrupts
- Context	switches

o Testing	Clients	and	Broker	on	same	host
eliminates	I/O	contention

o To	increase	synchronous	disk	write	performance	disk	
is	pre-allocated	and	swap-like	writes	are	used	– test	
ungraceful	crash	– it	is	potential	to	lose	all	persisted	
data.

Benchmarking	
Message	
Broker	and	
Persistence	
Issues

o Buffered	writes	locally	mean	
better	persistence	throughput

o Requires	replication,	at	
expense	of	multiple	network	
writes	per	message

o Replicates	are	check-pointed	
on	timed	basis	to	reduce	
overhead	but	can	be	10	
seconds	out	of	sync

o QoS can	define	when	and	
which	members	of	the	cluster	
ack

o Game	of	probabilities;
faster	persistence,	lower	QoS

Replication

Primary Replicate Replicate

State Engine

Persistent Message ClientDistributed	
Quorum-
based	
Persistence;
Watch	QoS
setup!!

o Benchmark	generators	don’t	capture
duplication	of	persistent	data	to	queues

o Duplicate	(or	more)	sends	greatly	affect	performance
- 2x	network	traffic	and	hardware	interrupts	on	brokers.

- 2x	file	synch	(or	replicated)	writes,	and	cache	usage

- If	writing	to	HDFS	then	the	slow	consumer	issue	comes	into	play	and	you	 lose	all	
read	cache	hits	and	slow	performance	of	duplicate	application	queue.

- Using	of	non-exclusive	queues	for	scaling	causes	fan-out	issues	which	affects	
broker	performance.

o Big	Data	applications	allow	elastic	scaling
- For	topic	data	this	buys	you	nothing	if	one	topic	is	over-used

- Testing	different	topics	on	different	applications	instance	is	a	science	project

Benchmarking	
Big	Data	
Applications	&	
Infrastructure

o Distance	and
TCP	Slow	Start

o Can’t	expect	LAN	
speeds	over	WAN	
just	because	
bandwidth	 is	
there

o WAN	simulators	=
must	use	network	
errors	and	
bandwidth	
throttling

Published 1,000 2,500 3,500 5,000

Solace	Rate 1,000
(100%)

2,496
(99.8%)

3,498
(99.9%)

4,992
(99.8%)

JMS	Rate 160
(16%)

160
(6.4%)

159
(4.5%)

159
(3%)

Messages
Published

Solace
JMS Software

6,000

5,000

4,000

3,000

2,000

1,000

0

Messages
per

Second

When	the	
speed	of	light	
slows	you	
down:
WAN	versus	LAN

Some	General	Issues

o HA	Clustering	
DR,	Monitoring	
and	Security/ACL

o Virus	Checkers

o Equivalent	
hardware

o Not	always	fair	to	use	
same	test	with	
multiple	vendors,	but	
try

o Throw	away	first	30	
second,	(esp.	w/	Java)

o Quick	test	runs	may	
skew	results

o Don’t	send	back-
to-back	messages

o Disable	Nagle’s

o Don’t	bypass	API	
event	queue

Questions?
If	you	don’t	have	questions	here	is	a	quiz	to	fill	the	time	while	
others	ask	questions.	What	is	wrong	with	the	following?

A	=	B
A2 =	AB

A2 – B2 =	AB	–B2

(A	+	B)(A– B)	=	B(A	– B)
A	+	B	=	B

Initial	Statement
Multiply	both	sides	by	A

Subtract	B2 from	both	sides
Factor

Divide	both	sides	by	(A	– B)
What!	I	though	A	=	B?
What’s	wrong	above?

