
Lars Bak and Kasper Lund,
Inventors of Dart,
Software engineers at Google

Want To Be a Better Programmer?

Combined Experiences

JavaScript

- We joined Google in 2006 to improve JavaScript performance
- Innovation, open source, and friendly competition made JavaScript >100x faster

Per
fo

rm
an

ce

New features

Innovation

in Apps

Did that make you a
better programmer?

Hmm…

var data = [0,1,2,3,4,5,6,7,8,9,0];

var opacity;

for(var i=0; i<data.length && i<10; i++){

 opacity = .5;

 if(i=0)

 opacity = 1;

}

Okay…

if('Function' == Object.prototype.toString.call(this._storeUnsubscribe).slice(8, -1)) {

 // Do something

}

Clearly we made you a
better programmer!

…. NOT

Wasted Effort? Nope!

● Faster JavaScript enables innovation on the web
○ Enables richer frameworks and better abstractions
○ Allows for much larger applications

● Developers still suffer from puzzling semantics and hard-to-identify errors
○ There is almost no declarative syntax and dependencies are hard to find
○ Errors are often absorbed and values are implicitly converted

How Do People Get By Today?

- TypeScript
- CoffeeScript
- Ceylon
- Scala.js
- Haxe
- Elm
- ClojureScript
- GWT and Closure compiler
- or Dart

What Makes You a Better Programmer?

Simplicity and consistency!

So we need:

● A simple and consistent programming language
● A simple and consistent application framework

Simple language
semantics

The Dart Language Introduction in One Slide

● Unsurprising object-oriented programming language

● Class-based single inheritance with interfaces and mixins

● Familiar syntax with proper lexical scoping

● Single-threaded with isolate-based concurrency

● Optional static types

Puzzling Value Coercion in JavaScript

print(2.0 == '2' == new Boolean(true) == '1')

$ v8 print.js
???
$

console

Implicit conversions will
make your head explode

Puzzling Value Coercion in JavaScript

print(2.0 == '2' == new Boolean(true) == '1')

$ v8 print.js
true
$

console

Implicit conversions will
make your head explode

Dart is an Open Standard (ECMA)

● Governed by a technical committee (TC52) since 2013
● Three editions of the specification have been published

June, 2014 First edition

December, 2014 Enumerations, asynchrony support, and deferred loading

June, 2015 Null-aware operators and generalized tear-offs

Constructors

Constructors in Object-oriented Languages

Simple example in:

● C++
● Java
● Dart

A

B

f() ..

f() ..

Constructors in C++
#include <stdio.h>

class A {

 public:

 A() { f(); }

 virtual void f() { printf("A\n"); }

};

class B : public A {

 public:

 B() : A() { f(); }

 void f() { printf("B\n"); }

};

int main() {

 B b;

}

$./a.out
A
B
$

console

Constructors in Java
class A {

 A() { f(); }

 void f() { System.out.println("A"); }

};

class B extends A {

 B() { f(); }

 void f() { System.out.println("B"); }

};

public class Prog {

 public static void main(String[] args) {

 new B();

 }

}

$ java Prog
B
B
$

console

Constructors in Java
class A {

 A() { f(); }

 void f() { System.out.println("A"); }

};

class B extends A {

 B() { f(); }

 final String x = "B";

 void f() { System.out.println(x); }

};

public class Prog {

 public static void main(String[] args) {

 new B();

 }

}

$ java Prog
B
B
$

console

Constructors in Java
class A {

 A() { f(); }

 void f() { System.out.println("A"); }

};

class B extends A {

 B() { f(); }

 final String x = "B".trim();

 void f() { System.out.println(x); }

};

public class Prog {

 public static void main(String[] args) {

 new B();

 }

}

$ java Prog
???
B
$

console

Constructors in Java
class A {

 A() { f(); }

 void f() { System.out.println("A"); }

};

class B extends A {

 B() { f(); }

 final String x = "B".trim();

 void f() { System.out.println(x); }

};

public class Prog {

 public static void main(String[] args) {

 new B();

 }

}

$ java Prog
null
B
$

console

Constructors in Dart
class A {

 A() { f(); }

 f() => print("A");

}

class B extends A {

 B() { f(); }

 final x = "B".trim();

 f() => print(x);

}

main() => new B();

$ dart prog.dart
B
B
$

console

Clean Semantics Make You Better

In Dart, constructors enforce two pass initialization
● All fields are initialized before ...
● … constructor bodies are executed

Constructors in Dart

class Symbol {

 final String name;

 static Map<String, Symbol> _cache = <String, Symbol>{};

 factory Symbol(String name) {

 if (_cache.containsKey(name)) return _cache[name];

 return _cache[name] = new Symbol._internal(name);

 }

 Symbol._internal(this.name);

}

main() {

 print(new Symbol("X") == new Symbol("X"));

}

Boilerplate

Simple Constructors

class Point {

 final num x, y;

 Point(this.x, this.y);

}

public class Point {

 public final double x, y;

 public Point(double x,

 double y) {

 this.x = x;

 this.y = y;

 }

}

Dart Java

No Need for Explicit Accessors

class Point {

 final num x, y;

 Point(this.x, this.y);

}

public class Point {

 private final double x, y;

 public Point(double x,

 double y) {

 this.x = x;

 this.y = y;

 }

 public double getX() {

 return x;

 }

 public double getY() {

 return y;

 }

}

Dart Java

 intentional overflow

Classes Can Act as Interfaces

class PolarPoint implements Point {

 num get x => ...;

 num get y => ...;

}

public interface Point {

 ...

}

public class CartesianPoint

 implements Point {

 ...

}

public class PolarPoint

 implements Point {

 ...

}

Dart Java

 intentional overflow

Generic Types Are Reified

List<String> listify(Set<String> s)

 => s.toList();

String[] listify(Set<String> s) {

 return s.toArray(

 new String[s.size()]);

}

Dart Java

Cascaded Calls

void drawCircle(CanvasElement canvas, int x, int y, int size) {

 canvas.context..beginPath()

 ..arc(x, y, size, 0, PI * 2, false)

 ..fill()

 ..closePath()

 ..stroke();

}

Cascaded Calls for Initialization

Set initialSet() => new Set()..add(42);

Cascaded Method Invocations

● Enables the programmer to apply method chaining to any object

● Expression always returns cascaded receiver object

● Inspiration from Smalltalk

Asynchrony
FTW

What About IO?

● Browser enforces single threaded
execution

● Blocking IO would allow one
operation at a time

○ … and kill responsiveness

● Why not solve it with multi-threading?

readWrite() {
 try {
 var c = read();
 write(c);
 } catch (e) {
 handleError(e);
 } finally {
 close();
 }
}

Synchronous code:

Asynchronous Callback

Synchronous code:

readWrite() {
 try {
 var c = read();
 write(c);
 } catch (e) {
 handleError(e);
 } finally {
 close();
 }
}

readWrite() {

 read((c) { write(c, handleError); },

 handleError);

}

// Finally block cannot be handled.

// Easy to make mistakes in error handling.

// … and fairly unreadable.

Futures Makes It Better

Synchronous code:

readWrite() {
 try {
 var c = read();
 write(c);
 } catch (e) {
 handleError(e);
 } finally {
 close();
 }
}

readWrite() {

 Future f = read();

 return f.then((c) => write(c))

 .catchError(handleError)

 .whenComplete(close);

}

// Control flow must be dealt with in library.

// Chaining of futures is tedious.

Solving the Callback Morass

● Hired Erik Meijer to help with asynchronous design

● Introduced special async methods

● Libraries were already based in futures and streams

● Inspired by C#

Async/await Feature

Synchronous code:

readWrite() {
 try {
 var c = read();
 write(c);
 } catch (e) {
 handleError(e);
 } finally {
 close();
 }
}

readWrite() async {

 try {

 var c = await read();

 await write(c);

 } catch (e) {

 handleError(e);

 } finally {

 await close();

 }

}

// await suspends the activation in a non-blocking way!

Reflections on async/await

Pros

● Restores “normal” control flow
○ Including exception and finally code

● Incremental migration of code

Cons

● Dual mode makes reasoning complicated

● Stack traces disappear

● Debugging is not intuitive

Simple and Consistent Language ✓

● Dart is a simple and consistent programming language
○ Unsurprising and familiar

○ Concise and useful

● Now we just have to fix the framework...

The Butterfly
Effect with
Flutter

Making Mobile Development Easier and Cheaper

Flutter is a new project to help developers build high-
performance, high-fidelity, mobile apps for iOS and Android
from a single codebase in Dart

http://flutter.io

Flutter is open source

Flutter Architectural Overview

Skia Dart VM Engine

Mojo

Services

Animation Painting

Rendering

Widgets

Material

Gestures

Shell
(C++)

Framework
(Dart)

Flutter is a Functional-Reactive Framework

class CounterState extends State {

 int counter = 0;

 void increment() {

 setState(() { counter++; });

 }

 Widget build(BuildContext context) =>

 new Scaffold(

 toolBar: new ToolBar(

 center: new Text("Flutter Demo")),

 body: new Material(

 child: new Center(

 child: new Text("Button tapped $counter times."))));

}

"Dart has been a great fit for mobile.
 It's familiar, flexible, and fast. We're building our entire

framework, widgets, and developer tools in Dart."

Seth Ladd, Product Manager for Flutter at Google

Simple Unified Application Framework

● One language to rule the entire stack
○ Same semantics

○ Same great tooling experience (debugging, etc.)

● Contrast to Dart + Angular + HTML

Dart in 2016

Google Fiber

Google AdWords

Dart for Web Apps

- Google is shipping large, mission critical web apps built in Dart
- Every day lots of developers are spending all their time writing in Dart

Why?

“Our engineers were highly productive as their projects scaled to many engineers.
Dart’s support for strong typing, its object-oriented nature, and its excellent IDE
integration really worked for us.”

Joshy Joseph, Distinguished Engineer, Google AdWords

Dart Runs Everywhere...

Browsers: Runs translated to JavaScript
Mobile: Runs on optimized Dart VM (Flutter)

IoT: Runs on embedded MCUs

Servers: Runs on optimized Dart VM

Work in progress...

Early preview SDK supporting Coretex M4/M7 microcontrollers is available.

http://dartino.org/

Small, efficient runtime for Dart:

● 32-bit microcontrollers (ARM, MIPS)
● 128 KB of RAM
● 512 KB of Flash

Dartino: Dart for Embedded Devices

Conclusions

Summary

● We designed a pragmatic OO programming language
○ It is readable and well-defined
○ It increases programmer productivity
○ It has nice systems properties

● Projects using Dart have claimed better productivity
● Several million lines of Dart code has been written at GoogleBoth creators of Dart hereby claim that

Dart makes you a better programmer

Questions

