
WHAT I WISH I KNEW 
BEFORE SCALING UBER 
TO 1,000 SERVICES
MATT RANNEY



WHAT I WISH I KNEW 
BEFORE SCALING UBER 
TO 1,000 SERVICES
MATT RANNEY







As of April 2016: 

Uber Cities Worldwide: 400+ 
Countries: 70 
Employees: 6,000+



LIFE LESSONS





MICROSERVICES
Immutable? 
Append Only?



WHY MICROSERVICES?
Move and Release Independently 
Own your Uptime 
Use the “Best” tool for the job



WHAT ARE THE COSTS?
Now you have a distributed system 
Everything is an RPC 
What if it breaks?



LESS OBVIOUS COSTS
Everything is a tradeoff 
You can build around problems 
Might trade complexity for politics 
You get to keep your biases



pre-history PHP (outsourced)

Dispatch Node.JS, moving Go

Core Services Python, moving to Go

Maps Python and Java

Data Python and Java

Metrics Go



LANGUAGES
Hard to share code 
Hard to move between teams 
WIWIK: Fragments the culture



RPC
HTTP/REST gets complicated 
JSON needs a schema 
RPCs are slower than PCs 
WIWIK: servers are not browsers



HOW MANY REPOS
Many is good 
One is good 
Many is bad 
One is bad





APRIL 2016

MAY 2016



OPERATIONAL
What happens when things break? 
Can other teams release your service? 
Understand a service in the larger context



PERFORMANCE
Depends on language tools











PERFORMANCE
Doesn’t matter until it does 
Probably want at least simple perf requirements 
WIWIK: “good” not required, but “known” is



overall latency ≥ latency of slowest 
1ms avg, 1000ms p99 
use 1: 1% at least 1000ms 
use 100: 63% at least 1000ms 
1.0 - 0.99^100 = 0.634 = 63.4%

FANOUT



re
q

ue
st

s 
th

at
 a

re
 s

lo
w

0%

25%

50%

75%

100%

Processes Used

1 2 4 8 16 32 64 128 256 512 1024

p95 p99 p99.9



TRACING
Lots of ways to get this 
Best way to understand fanout









TRACING
Probably want sampling 
WIWIK: cross-lang context propagation



LOGGING
Need consistent, structured logging 
Multiple languages makes this hard 
Logging floods can amplify problems 
WIWIK: Accounting







LOAD TESTING
Need to test against production 
Without breaking metrics 
Preferably all the time 
WIWIK: all systems need to handle “test” traffic



FAILURE TESTING
WIWIK: people won’t like it 



MIGRATIONS
Old stuff still has to work 
What happened to immutable? 
WIWIK: mandates are bad



OPEN SOURCE
Build/buy tradeoff is hard 
Commoditization 
WIWIK: this will make people sad



POLITICS
Services allow people to play politics 
Company > Team > Self



TRADEOFFS
Everything is a tradeoff 
Try to make them intentionally



THANKS


