
Stability Patterns and
Antipatterns

Michael Nygard

A Developer Sojourns
in Operations

2

3

4

5

Availability
Probability that system is operating at time t.

Stability
Architectural characteristic producing availability
despite faults and errors.

6

Fault
Incorrect internal state. Initiated via defect or injection. 
 

Error
Observably incorrect operation. 
 

Failure
Loss of availability. System unresponsive.

Stability Antipatterns

7

Integration Points

Integrations are the #1 risk to stability.

Your first job is to protect 
against integration points.
Every socket, process, pipe,  
or remote procedure call  
can and will eventually  
kill your system.
Even database calls can  
hang, in obvious and  
not-so-obvious ways.

Example: Wicked database
hang

Not at all obvious: Firewall idle connection timeout
“Connection” is an abstraction.

The firewall only sees packets.

It keeps a table of “live” connections.

When the firewall sees a TCP teardown sequence, it 
removes that connection from the table.

To avoid resource leaks, it will drop entries from table after idle period timeout.

Causes broken database connections after long idle period, like 2 a.m. to 5 a.m.

Simple solution: Enable “dead connection detection” (Oracle) or similar
feature to keep connection alive.
Alternative solution: timed job to periodically issue trivial query.

What about prevention?

“In Spec” vs. “Out of Spec”

“In Spec” failures
TCP connection refused
HTTP response code 500
Error message in XML
response

Example: Request-Reply using XML over HTTP

Well-Behaved Errors Wicked Errors

“Out of Spec” failures

TCP connection accepted, but no data
sent

TCP window full, never cleared

Server never ACKs TCP, causing very
long delays as client retransmits

Connection made, server replies with
SMTP hello string

Server sends HTML “link-farm” page

Server sends one byte per second

Server sends Weird Al catalog in MP3

Remember This

Know when to open up abstractions.

Failures propagate quickly.

Large systems fail faster than small ones.

Apply “Circuit Breaker”, “Use Timeouts”, “Use Decoupling
Middleware”, and “Handshaking” to contain and isolate
failures.

Use “Test Harness” to find problems in development.

Chain Reaction

Example:
Suppose S4 goes down

S1 - S3 go from 25% of total  
to 33% of total

That’s 33% more load
Each one dies faster
Failure moves horizontally 
across tier
Common in search engines 
and application servers

Failure in one component raises probability of failure in its peers

Remember This

One server down jeopardizes the rest.

Hunt for Resource Leaks.

Defend with “Bulkheads”.

The Microservice Failure Mode

Failure in one system causes calling systems to be jeopardized

Example:
System S goes down, causing
calling system A to get slow or go
down.

Cascading Failure

Remember This

Damage Containment

Scrutinize resource pools

Defend via Timeouts & Circuit Breakers

Attacks of Self-Denial

Send promotion to a “select group”

About 10,000,000 times more show up

Get crushed

Good marketing can kill your system at any time.

Defending the Ramparts

Avoid deep links
Set up static landing pages
Only allow the user’s second click to reach
application servers
Allow throttling of incoming users
Set up lightweight versions of dynamic pages.
Use your CDN to divert users
Use shared-nothing architecture

Remember This

Keep lines of communication open

Protect shared resources

Expect instantaneous distribution of exploits

Scaling Effects

Ratios in dev and QA tend to be 1:1
Web server to app server

Front end to back end

Production is wildly different

Understand which end of the lever you are sitting on.

Example: Point to Point
Cache Invalidation

Development
Dev Server

App 1

1 server
1 local call

No TCP connections

QA

2 servers
1 local call

1 TCP connection

Production

8 servers
1 local call

7 TCP connection

QA Server 1

App 1

QA Server 2

App 2

App Server

App 1

App Server

App 2

App Server

App 3

App Server

App 4

App Server

App 5

App Server

App 6

App Server

App 7

App Server

App 8

App 1 App 2

Common

Service

App 3 App 4 App 5 App 6 App 7 App 8

Example: Shared Resources

Examine services you call. Are they sized correctly?

Remember This

Desk check ratios

Broadcast instead of point-to-point

Watch out for shared resources

Unbalanced Capacities

Online
Store

SiteScope
NYC

Customers

SiteScope
San Francisco

20 Hosts

75 Instances

3,000 Threads

Order
Management

6 Hosts

6 Instances

450 Threads

Scheduling

1 Host

1 Instance

25 Threads

Traffic floods sometimes start inside the data center walls.

Unbalanced Capacities

Unbalanced capacities is a type of scaling effect
that occurs between systems in an enterprise.

May appear after changes in traffic patterns

Remember This

Examine server and thread counts

Watch out for changes in traffic patterns

Stress both sides of the interface in QA

Simulate back end failures during testing

Slow Responses

What does your server do when it’s overloaded?
“Connection refused” is a fast failure, the caller’s
thread is released right away

A slow response ties up the caller’s thread, makes the
user wait

It uses capacity on caller and receiver

If the caller times out, then the work was wasted

Slow response is worse than no response

Slow Responses

Too much load on system

Transient network saturation

Firewall overloaded

Protocol with retries built in (NFS, DNS)

Chatty remote protocols

Remember This

Slow responses trigger cascading failures

Slow responses invite more traffic

Don’t send a slow response; fail fast

Hunt for memory leaks or resource contention

Unbounded Result Sets

Development and testing is done with small data sets

Test databases get reloaded frequently

Queries that are OK in dev bonk badly with production
data volume.

Limited resources, unlimited data volume

Unbounded Result Sets:
Databases

SQL queries have no inherent limits

ORM tools are bad about this

It starts as a degenerating performance problem, but
can tip the system over

Unbounded Result Sets: SOA

Often found in chatty remote protocols, together
with the N+1 query problem
Causes problems on the client and the server
On server: constructing results, marshalling XML

On client: parsing XML, iterating over results.

This is a breakdown in handshaking. The client
knows how much it can handle, not the server.

Remember This

Test with realistic data volumes
Scrubbed production data is the best.

Generated data also works.

Don’t rely on the data producers. Their
behavior can change overnight.
Put limits in your application-level protocols:
WS, RMI, DCOM, XML-RPC, etc.

Stability Patterns

33

Use Timeouts

In any server-based application, request
handling threads are your most precious
resource
When all are busy, you can’t take new requests

When they stay busy, your server is down

Busy time determines overall capacity

Protect request handling threads at all costs

Don’t hold your breath.

Considerations

Calling code must be prepared for timeouts.

Better error handling is a good thing anyway.

Beware third-party libraries and vendor APIs.

Remember This

Apply to Integration Points, Blocked Threads, and
Slow Responses 

Apply to recover from unexpected failures.

Consider delayed retries.

Circuit Breaker

Have you ever seen a remote call wrapped with a
retry loop?
 int remainingAttempts = MAX_RETRIES;

 while(--remainingAttempts >= 0) {
 try {
 doSomethingDangerous();
 return true;
 } catch(RemoteCallFailedException e) {
 log(e);
 }
 }
 return false;

Why?  

Defend yourself.

Retries Hurt Users and
Systems

Systems:
Ties up caller’s resources,
reducing overall capacity.
If target service is busy, retries
increase its load at the worst
time.
Every single request will go
through the same retry loop,
letting a back-end problem
cause a front-end brownout.

Users:
Retries make the user wait
even longer to get an error
response.
After the final retry, what
happens to the users’ work?
The target service may be non-
critical, so why damage critical
features for it?

Stop Banging Your Head

Circuit Breaker:
Wraps a “dangerous” call
Counts failures
After too many failures, stop
passing calls through
After a “cooling off” period, try the
next call
If it fails, wait for another cooling
off time before calling again

Closed

on call / pass through
call succeeds / reset count
call fails / count failure
threshold reached / trip breaker

Open

on call / fail
on timeout / attempt reset

pop

Half-Open

on call/pass through
call succeeds/reset
call fails/trip breaker

attempt
reset

reset pop

Remember This

Use Circuit Breakers together with Timeouts
Expose, track, and report state changes
Circuit Breakers prevent Cascading Failures
They protect against Slow Responses

Bulkheads

Increase resilience by partitioning
(compartmentalizing) the system
One part can go dark without losing service
entirely

Apply at several levels
Thread pools within a process

CPUs in a server (CPU binding)

Server pools for priority clients

Save part of the ship, at least.

Common Mode Dependency:
Service-Oriented Architecture

Foo Bar

Baz

Foo and Bar are coupled by their shared use of Baz

SOA with Bulkheads

Foo Bar

Baz

Baz

Pool 1

Baz

Pool 2

Foo and Bar each have
dedicated resources

from Baz.

Surging demand–or bad code–
in Foo only harms Foo.

Each pool can be rebooted, or
upgraded, independently.

Remember This

Save part of the ship
Pick a useful granularity
Very important with SaaS and microservices
Monitor each partitions performance to SLA

Steady State

Run without crank-turning and hand-holding
Human error is a leading cause of downtime
If regular intervention is needed, then missing
the schedule will cause downtime

Run indefinitely without fiddling.

x

y

h

Routinely Recycle Resources
All computing resources are finite
For every mechanism that accumulates  
resources, there must be some  
mechanism to reclaim those  
resources

In-memory caching

Database storage

Log files

Three Common Violations of
Steady State

Runaway Caching
Meant to speed up
response time

When memory low, can
cause more GC

Database Sludge
Rising I/O rates

Increasing latency

DBA action ⇒
application errors

Gaps in collections

Unresolved references

Log File Filling
Most common ticket in
Ops

Best case: lose logs

Worst case: errors

∴ Compress, rotate, purge
∴ Limit by size, not time

∴ Build purging into app∴ Limit cache size,  
 make “elastic”

How long is your shortest fuse?

In crunch mode, it’s hard to make
time for housekeeping functions.

Features always take priority over
data purging.

This is a false economy: one-time
development cost for ongoing

operational costs.

Remember This

Avoid fiddling
Purge data with application logic
Limit caching
Roll the logs

Fail Fast

Imagine waiting all the way through the line  
at the Department of Motor Vehicles,  
just to be sent back to fill out a  
different form.

Don’t burn cycles, occupy  
threads and keep callers  
waiting, just to slap them  
in the face.

Don’t make me wait to receive an error.

Predicting Failure

Several ways to determine if a request will
fail, before actually processing it:

Good old parameter-checking

Acquire critical resources early

Check on internal state:
Circuit Breakers

Connection Pools

Average latency vs. committed SLAs

Being a Good Citizen by
Failing Fast

In a multi-tier application or SOA, Fail Fast
avoids common antipatterns:

Slow Responses

Blocked Threads

Cascading Failure

Helps preserve capacity when parts of
system have already failed.

Remember This

Avoid Slow Responses; Fail Fast
Reserve resources, verify integration points early
Validate input; fail fast if not possible to process
request

Decoupling Middleware

Async avoids risk.

Fire and forget.

In-Process
Method Calls

Shared Memory
Pipes

Semaphores
Windows Events

Interprocess
Communication

C Functions
Java Calls

Dynamic Libs

DCE RPC
DCOM

RMI
XML-RPC

HTTP

Remote
Procedure Calls

Same Time
Same Host

Same Process

Different Time
Different Host

Different Process

Same Time
Different Host

Different Process

MQ
Pub-Sub

SMTP
SMS

Message-Oriented
Middleware

JavaSpaces
TSpaces

GigaSpaces

Tuple Spaces

Spectrum of Coupling

Request-reply: logical simplicity, operational complexity
Message passing: logical complexity, operational simplicity
Tuple Spaces: logical complexity, operational complexity

Consideration

Changing middleware usually implies a rewrite. 

Changing from synchronous to asynchronous
semantics implies business rule discussions.
 
Middleware decisions are often handed down
from the ivory tower.

Remember This

Decide at the last responsible moment. 

Avoid many failure modes at once by total
decoupling.
 
Learn many architecture styles, choose among  
them as appropriate.

Bug is
triggered

Thread Pool is
Exhausted

Server Stops
Responding

Calling System
Stops

Responding

All Features
Unavailable

System
Architecture

Amplifies Fault

Propagation of Problems

Bug is
triggered

Thread Pool is
Exhausted

Server Stops
Responding

Calling System
Cannot Perform

Feature

One Feature
Unavailable,
Remainder
Unaffected

System
Architecture
Damps Fault

Nullification of Problems

©Michael Nygard, 2007-2016 60

Michael T. Nygard
@mtnygard

mtnygard@cognitect.com

mailto:mtnygard@cognitect.com?subject=

