
Building low latency Micro Services and monolith in Java
using high performance serialization and messaging

Peter Lawrey - CEO of Higher Frequency Trading

GOTO Chicago - 2016

Microservices for Performance

Peter	Lawrey	
	
Java	Developer/Consultant	for	investment	banks	
and	hedge	funds	for	8	years,	23	years	in	IT.	
Most	answers	for	Java	and	JVM	on	
stackoverflow.com	
Founder	of	the	Performance	Java	User’s	Group.	
Architect	of	Chronicle	SoNware	
Java	Champion	

Chronicle	SoNware	
Help	companies	migrate	to	high	performance	Java	code.	
Sponsor	open	source	projects	hQps://github.com/OpenHFT	
Licensed	soluTons	Chronicle-FIX,	Chronicle-Enterprise	and	
Chronicle-Queue-Enterprise	
Offer	one	week	proof	of	concept	workshops,	advanced	Java	
training,	consulTng	and	bespoke	development.	
	

My	First	Computer	
	
	
	
	
	
	
	
	
	

128	KB	of	RAM	

Where	do	Microservices	come	from?	

Microservices	builds	on	design	principles	which	have	been	around	for	
some	Tme.			
•  UNIX	Principle.	
•  Staged	Event	Driven	Architecture.	
•  Service	Orientated	Architecture.	
•  Lambda	Architecture.	
•  ReacTve	Streams.	
•  Used	in	building	Web	applicaTons.	“Micro-Web-Services”	

Performance	for	GUI	applicaTons	
A	key	performance	threshold	for	GUI	applicaTons	is	the	speed	a	
human	can	see.		Anything	faster	than	this	doesn’t	maQer	for	a	GUI.	
	
In	cinemas,	the	frame	rate	used	to	be	24	frames	per	second.	
	
This	means	anything	shorter	than	40	ms	is	unlikely	to	be	
important.	

Computer	programs	vs	Hardware.	
GUI	programs	have	tended	to	not	get	any	faster,	rather	they	
aQempt	to	give	a	richer	experience.	

Microservices	denial?	

Microservices	bring	together	best	pracTces	from	a	variety	of	areas.			
Most	likely	you	are	already	using	some	of	these	best	pracTces.	
	
ReacTons	to	Microservices	
•  It	sounds	like	markeTng	hype.	
•  It	all	sounds	preQy	familiar.	
•  It	just	a	rebranding	of	stuff	we	already	do.	
•  There	is	room	for	improvement	in	what	we	do.	
•  There	are	some	tools,	and	ideas	we	could	apply	to	our	systems	

without	changing	too	much.	

Microservices	score	card	
Today	 Quick	Wins	 6	Months	

Simple	component	based	design.	 ★★	 ★★☆	 ★★☆	

Distributed	by	JVM	and	Machine	 ★★	 ★★	 ★★☆	

Service	Discovery	 ★	 ★☆	 ★★	

Resilience	to	failure	 ★☆	 ★☆	 ★★	

Transport	agnosTc	 ★	 ★☆	 ★★	

Asynchronous	messaging.	 ★☆	 ★★	 ★★	

Automated,	dynamic	deployment	of	
services.	

★☆	 ★★	 ★★☆	

Service	private	data	sets.	 ☆	 ★☆	 ★★	

Transparent	messaging.	 ☆	 ★★	 ★★☆	

Independent	Teams	 ★☆	 ★★	 ★★	

Lambda	Architecture	 ★	 ★★	 ★★★	

Benefit	of	Microservices	in	Trading	Systems	

Standard	techniques	for	developing	and	deploying	distributed	
systems	
•  Shorter	Tme	to	market.	
•  Easier	to	maintain.	
•  Simpler	programming	models.	

What	Microservices	can	learn	from	Trading	
Systems	Trading	system	have	been	working	with	performant	distributed	

systems	for	years.	
•  Asynchronous	messaging,	how	to	test	correctness	and	

performance	for	latencies	you	cannot	see.	
•  Building	determinisTc,	highly	reproducible	systems.	

What	is	low	latency?	

The	term	“low	latency”	can	applied	to	a	wide	range	of	situaTons.			
A	broad	definiTon	might	be;	
Low	latency	means	you	have	a	view	on	how	much	the	response	
Tme	of	a	system	costs	your	business.	
	
In	this	talk	I	will	assume;		
Low	latency	means	you	care	about	latencies	you	can	only	
measure	as	even	the	worst	latencies	are	too	fast	to	see.		

Example	of	low	latency?	

An	Investment	Bank	measured	the	99.999%ile	(worst	1	in	
100,000)	latency	of	our	Chronicle	FIX	engine	at	450	micro-
seconds.	Chronicle	FIX	is	wriQen	in	Java.	
This	was	unacceptable	to	them.	We	fixed	this	bug	and	dropped	it	
to	below	35	micro-seconds.	
This	was	aNer	a	socket	read	to	aNer	decoding	the	message	to	
their	data	model	and	persisTng	it.	

To	Go	Faster	Do	Less	Work	

Micro-services	design	encourages	a	design	where	each	service	does	
something	simple	and	it	does	it	well.	
	
Your	L1/L2	caches	are	a	precious	resource.		They	are	limited	of	only	
32	KB	(instrucTon),		32	KB	(data)	and	256	KB	(L2).		If	you	exceed	this	
you	are	hipng	the	shared	L3	cache	which	is	a	scalability	problem	
AND	every	access	is	10x	slower	or	more.	
	
If	you	want	to	scale	across	cores,	stay	in	your	L1/L2	cache	you	want	
each	thread	to	perform	a	simple	task	which	fits	inside	its	caches	as	
much	as	possible.	
	

Where	do	they	overlap.	

Microservices	and	Trading	Systems	have	high	level	principles	of		
•  Simple	component	based	design.	
•  Asynchronous	messaging.	
•  Automated,	dynamic	deployment	of	services.	
•  Service	private	data	sets.	
•  Transparent	messaging.	
•  Teams	can	develop	independently	based	on	well	defined	

contracts.	

Each	output	is	the	result	of	one	input	message.	This	is	useful	for	
gateways,	both	in	and	out	of	your	system	and	highly	concurrent.	

Each	output	is	the	result	of	ALL	the	inputs.	Instead	of	replying	ALL	
input	message	each	Tme,	the	FuncTon	could	save	an	accumulated	
state	(which	can	be	recreated	by	replaying	inputs)	

Your	criTcal	path	as	a	series	of	low	latency,	non	
blocking	tasks.	This	keeps	your	latencies	end	to	
end	consistently	low.	

What	do	we	mean	by	a	Distributed	System.	

Usually	a	distributed	system	will	have	a	processes	run	across	
mulTple	machines.	
	
In	a	high	performance	space	you	want	to	thinking	about	how	your	
threads	are	distributed	within	your	machine.	
	
In	parTcular,	NUMA	regions	can	be	criTcal	especially	for	the	JVM	
which	has	a	GC	which	assumes	random	access	to	all	memory.	
	
Even	if	you	are	working	within	a	single	NUMA	region,	it	can	be	
worth	looking	at	the	distribuTon	of	your	applicaTon	within	a	region.	

A	Computer	is	a	Distributed	System.	

When	you	are	considering	short	Tme	scales	of	10	micro-seconds	or	
less,	you	have	to	consider	that	each	core	as	a	processor	of	it’s	own.	
Each	core	
	
-  has	it’s	own	memory	(L1	&	L2	caches)	
-  can	run	independently	
-  communicates	with	other	cores	via	a	L2	cache	coherence	bus.	
	

Designing	for	Micro-services	

Micro-services	need	to	have;	
-  IsolaTon,	minimises	contenTon	of	state.	
-  Asynchronous	messages,	minimises	the	impact	of	delays.	
-  One	thing	and	do	it	well,	stay	in	your	private	CPU	caches.	
-  Services	should	be	addressable.	
-  Transparency	of	what	your	services	are	doing.	*	

Micro-services	come	in	systems	must	be	testable	in	isolaTon.	
*	Transparency	is	needed	if	you	are	to	remove	redundant	work.	

TesTng	and	Debugging	Micro-services	

You	want	micro-services	which	are	easy	to	unit	test	and	debug.		
However,	your	framework	and	infrastructure	can	get	in	the	way.		
They	are	not	helping.	
	
You	need	to	be	able	to	run	your	services	as	stand	alone	
components.		These	components	can	be	tested,	integrated	and	
debugged	without	the	framework	or	infrastructure	so	you	can	see	
where	the	source	of	your	issues	are.	

Why	not	use	a	framework?	

In	this	example	we	look	at	how	to	implement	these	services	
without	a	framework.		Frameworks	are	very	good	for	gepng	
started	but	are	not	so	good	if	the	framework	doesn’t	do	exactly	
what	you	want.		In	parTcular	they	are	not	very	good	at	doing	less.	
	
In	performant	systems,	how	easy	it	is	to	remove	something	the	
program	doesn’t	have	to	be	doing	is	just	as	important	as	how	easy	
it	is	to	add	some	funcTonality.	
	
The	key	is	transparency	in	what	your	services	are	doing.	

Turning	a	Monolith	into	Micro-Services	

You	need	to	have	good	component	based	design	whether	you	
have	Micro-Services	or	a	Monolith	with	clear	separaTon	of	
concerns.		Micro-services	make	good	component	design	even	
more	important	as	they	won’t	well	work	unless	you	do	this.	
	
To	turn	your	components	into	services,	you	need	to	add	a	
transport.		This	transport	should	be	interchangeable	in	fact	it	
should	be	opTonal	and	have	no	impact	if	it’s	not	there.	
	

Component	+	Transport	=	Service.	

Let’s	look	at	an	example	

Say	we	have	a	market	data	component	which	combines	prices	and	
this	feeds	another	component	which	is	your	order	manager.	
	
A	more	details	discussion	of	this	example	is	on	my	blog	
hQps://vanilla-java.github.io/	
	
The	full	code	is	hQps://github.com/Vanilla-Java/Microservices/	
	

StarTng	with	a	simple	contract	

A	simple	contract	for	a	service	which	takes	asynchronous	
messages	is	an	interface.	Each	message	has	a	method	name	and	it	
takes	one	or	more	arguments.	
	
Say	we	have	a	component	which	consumes	one	sided	prices	
	
	
And	this	produces	top	of	book	prices	with	bid	and	ask	
	

public interface SidedMarketDataListener {
 void onSidedPrice(SidedPrice sidedPrice);
}

public interface MarketDataListener {
 void onTopOfBookPrice(TopOfBookPrice price);
}

A	Data	Transfer	Object	

AbstractMarshallable	provides	an	equals,	hashCode	and	toString.	
	public class SidedPrice extends AbstractMarshallable {
 String symbol;
 long timestamp;
 Side side;
 double price, quantity;

 public SidedPrice(String symbol, long timestamp, Side side, double price, double quantity) {
 init(symbol, timestamp, side, price, quantity);
 }

 public SidedPrice init(String symbol, long timestamp, Side side, double price, double quantity) {
 this.symbol = symbol;
 this.timestamp = timestamp;
 this.side = side;
 this.price = price;
 this.quantity = quantity;
 return this;
 }
}

Deserializable	toString()	

For	it	to	deserialize	the	same	object,	no	informaTon	can	be	lost,	
which	useful	to	creaTng	test	objects	from	producTon	logs.	
	

SidedPrice sp = new SidedPrice("Symbol", 123456789000L,
 Side.Buy, 1.2345, 1_000_000);

assertEquals("!SidedPrice {\n" +
 " symbol: Symbol,\n" +
 " timestamp: 123456789000,\n" +
 " side: Buy,\n" +
 " price: 1.2345,\n" +
 " quantity: 1000000.0\n" +
 "}\n", sp.toString());

// from string
SidedPrice sp2 = Marshallable.fromString(sp.toString());
assertEquals(sp2, sp);
assertEquals(sp2.hashCode(), sp.hashCode());

WriTng	a	simple	component	

We	have	a	component	which	implements	our	contract	and	in	turn	
calls	another	interface	with	the	result	(if	there	is	one)	

public class SidedMarketDataCombiner implements SidedMarketDataListener {
 final MarketDataListener mdListener;
 final Map<String, TopOfBookPrice> priceMap = new TreeMap<>();

 public SidedMarketDataCombiner(MarketDataListener mdListener) {
 this.mdListener = mdListener;
 }

 public void onSidedPrice(SidedPrice sidedPrice) {
 TopOfBookPrice price = priceMap.computeIfAbsent(sidedPrice.symbol,
TopOfBookPrice::new);
 if (price.combine(sidedPrice))
 mdListener.onTopOfBookPrice(price);
 }
}

Mocking	our	simple	component	

We	can	use	standard	mocking	tools	such	as	EasyMock	and	I	easy	
test	this	from	my	IDE.	
@Test
public void testOnSidedPrice() {
 // what we expect to happen
 SidedPrice sp = new SidedPrice("Symbol", 123456789000L,

 Side.Buy, 1.2345, 1_000_000);
 SidedMarketDataListener listener = createMock(SidedMarketDataListener.class);
 listener.onSidedPrice(sp);
 replay(listener);

 // what happens
 listener.onSidedPrice(sp);

 // verify we got everything we expected.
 verify(listener);
}

TesTng	our	simple	component	

We	can	mock	the	output	listener	of	our	component.	

MarketDataListener listener = createMock(MarketDataListener.class);
listener.onTopOfBookPrice(new TopOfBookPrice("EURUSD", 123456789000L,

 1.1167, 1_000_000, Double.NaN, 0));
listener.onTopOfBookPrice(new TopOfBookPrice("EURUSD", 123456789100L,

 1.1167, 1_000_000, 1.1172, 2_000_000));
replay(listener);

SidedMarketDataListener combiner = new SidedMarketDataCombiner(listener);
combiner.onSidedPrice(new SidedPrice("EURUSD", 123456789000L,

 Side.Buy, 1.1167, 1e6));
combiner.onSidedPrice(new SidedPrice("EURUSD", 123456789100L,

 Side.Sell, 1.1172, 2e6));

verify(listener);

TesTng	mulTple	components	

We	can	mock	the	output	listener	of	our	component.	// what we expect to happen
OrderListener listener = createMock(OrderListener.class);
listener.onOrder(new Order("EURUSD", Side.Buy, 1.1167, 1_000_000));
replay(listener);

// build our scenario
OrderManager orderManager = new OrderManager(listener);
SidedMarketDataCombiner combiner = new SidedMarketDataCombiner(orderManager);

// events in
orderManager.onOrderIdea(new OrderIdea("EURUSD", Side.Buy, 1.1180, 2e6)); // not expected to trigger

combiner.onSidedPrice(new SidedPrice("EURUSD", 123456789000L, Side.Sell, 1.1172, 2e6));
combiner.onSidedPrice(new SidedPrice("EURUSD", 123456789100L, Side.Buy, 1.1160, 2e6));

combiner.onSidedPrice(new SidedPrice("EURUSD", 123456789100L, Side.Buy, 1.1167, 2e6));

orderManager.onOrderIdea(new OrderIdea("EURUSD", Side.Buy, 1.1165, 1e6)); // expected to trigger

verify(listener);

Adding	a	transport	

Any	messaging	system	can	be	used	as	a	transport.	You	can	use	
-  REST	or	HTTP	
-  JMS	or	Akka	
-  Aeron	or	a	UDP	based	transport.	
-  Raw	TCP	or	UDP.	
-  Chronicle	Queue.	

Why	use	Chronicle	Queue	

Chronicle	Queue	v4	has	a	number	of	advantages	
-  Broker	less,	only	the	OS	needs	to	be	up.	
-  Low	latency,	less	than	10	microseconds	99%	of	the	Tme.	
-  Persisted,	giving	your	replay	and	transparency.	
-  Can	replace	your	logging	improving	performance.	
-  Kernel	Bypass,	Shared	across	JVMs	with	a	system	call	for	each	

message.	

What	does	Chronicle	Queue	look	like?	
---	!!meta-data	#binary		
header:	!SCQStore	{	wireType:	!WireType	BINARY,	writePosition:	777,	roll:	!SCQSRoll	
{	length:	86400000,	format:	yyyyMMdd,	epoch:	0	},	indexing:	!SCQSIndexing	
{	indexCount:	!int	8192,	indexSpacing:	64,	index2Index:	0,	lastIndex:	0	}	}		
#	position:	227		
---	!!data	#binary		
onOrderIdea:	{	symbol:	EURUSD,	side:	Buy,	limitPrice:	1.118,	quantity:	2000000.0	}		
#	position:	306		
---	!!data	#binary		
onTopOfBookPrice:	{	symbol:	EURUSD,	timestamp:	123456789000,	buyPrice:	NaN,	buyQuantity:	
0,	sellPrice:	1.1172,	sellQuantity:	2000000.0	}		
#	position:	434		
---	!!data	#binary		
onTopOfBookPrice:	{	symbol:	EURUSD,	timestamp:	123456789100,	buyPrice:	1.116,	
buyQuantity:	2000000.0,	sellPrice:	1.1172,	sellQuantity:	2000000.0	}		
#	position:	566		
---	!!data	#binary		
onTopOfBookPrice:	{	symbol:	EURUSD,	timestamp:	123456789100,	buyPrice:	1.1167,	
buyQuantity:	2000000.0,	sellPrice:	1.1172,	sellQuantity:	2000000.0	}		
#	position:	698		
---	!!data	#binary		
onOrderIdea:	{	symbol:	EURUSD,	side:	Buy,	limitPrice:	1.1165,	quantity:	1000000.0	}		
...		
#	83885299	bytes	remaining

Measuring	the	performance?	

Measure	the	write	latency	with	JMH		(Java	Microbenchmark	Harness)

 Percentiles, us/op:

 p(0.0000) = 2.552 us/op

 p(50.0000) = 2.796 us/op

 p(90.0000) = 5.600 us/op

 p(95.0000) = 5.720 us/op

 p(99.0000) = 8.496 us/op
 p(99.9000) = 15.232 us/op

 p(99.9900) = 19.977 us/op
 p(99.9990) = 422.475 us/op

 p(99.9999) = 438.784 us/op
 p(100.0000) = 438.784 us/op

Java	Latency	Benchmark	Harness	

JMH	is	an	excellent	tool,	why	add	another?	
	
JLBH	measures	
-  Timings	in	asynchronous	threads.	
-  Timings	from	any	point	in	the	process	to	another.	
-  Works	with	a	set	throughput.	
-  Accounts	for	coordinated	omission.	
-  Has	a	background	thread	to	report	the	general	noise.	

Java	Latency	Benchmark	Harness	

MulTple	services	running	in	their	own	threads	can	be	chained	and	
performance	tested	individually	as	well	as	end	to	end.
@Override
public void init(JLBH jlbh) {
 serviceIn = SingleChronicleQueueBuilder.binary(queueIn).build()

 .createAppender().methodWriter(Service.class);

 service2 = new ServiceWrapper<>(queueIn, queue2,

 new ServiceImpl(jlbh.addProbe("Service 2")));

 service3 = new ServiceWrapper<>(queue2, queue3,

 new ServiceImpl(jlbh.addProbe("Service 3")));

 serviceOut = new ServiceWrapper<>(queue3, queueOut,

 new ServiceImpl(jlbh.addProbe("Service Out"), jlbh));
}

Typical	performance	

For	a	trivial	service,	the	typical	performance	is	consistent.	
Tested	on	a	E5-2650	v2.	FiNeen	2	minute	tests	were	compared.	

Looking	at	the	nines	

For	a	trivial	service,	the	typical	performance	is	consistent.	At	99%,	
the	throughput	has	an	impact	on	latency.

Looking	at	the	nines	

At	99.9%,	the	throughput	makes	a	big	difference	to	the	latency.	
At	400K/s	the	99.9%ile	hit	19	ms	in	one	2	minute	run.

No	Flow	Control?	

Chronicle	Queue	is	a	producer	centric	soluTon,	unlike	most	
messaging	systems	which	are	consumer	centric.	
-  many	publishers	don't	support	flow	control	(e.g.	market	data)	

or	don't	want	it	(reporTng	to	compliance	systems)	
-  Flow	control	can	hide	the	worst	latencies.	
-  Flow	control	means	an	asynchronous	consumer	is	iteracTng	

with	it’s	producer.	
Without	flow	control,	the	producer	and	consumer	behave	the	
same	whether	tested	stand	alone	or	running	at	the	same	Tme	as	
the	producer	is	never	impacted	by	a	slow	consumer.	

Chronicle	Queue	Enterprise	

We	have	a	licensed	version	of	Chronicle	Queue	which	includes	
•  A	ring	buffer	to	minimise	the	jiQer	of	persisTng	messages.	
•  Confirmed	mulT-node	replicaTon.	The	writer	and	reader	can	

know	or	wait	for	a	message	to	be	successfully	replicated.	
•  ReplicaTon	throQling,	and	traffic	shaping.	
•  Compressing	of	files	on	rolling.	

Coming	soon,	mulT-master	mulT-node	queue.	
	

Where	can	I	try	this	out?	

Low	Latency	Microservices	examples	
hQps://github.com/Vanilla-Java/Microservices	
	
The	OSS	Chronicle	products	are	available	
hQps://github.com/OpenHFT/	
	
Contact	us	for	a	trail	version	of	Chronicle-FIX,		
Chronicle-Enterprise	or	Chronicle-Queue-Enterprise.	
sales@chronicle.soNware	
	

In	summary	

•  Microservices	doesn’t	mean	you	can	do	things	differently,	
only	improve	what	you	are	doing	already.	

•  Introduce	the	Best	PracTces	which	make	sense	for	you.	
•  You	will	have	some	Best	PracTces	already.	
•  Trading	Systems	are	distributed	systems,	even	if	on	one	

machine.	
•  Lambda	Architecture	is	simple	so	use	it	as	much	as	possible,	

though	it	won’t	solve	all	problems.	

Q	&	A	

Blog:	hQp://vanilla-java.github.io/	

hQp://chronicle.soNware	

@ChronicleUG	

sales@chronicle.soNware	

hQps://groups.google.com/forum/#!forum/java-chronicle	

	

