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Motivation
Why is a Data Pipeline talk in this Always 
Available Track?
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Motivation
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Always On work has traditionally focused on the availability of 
Serving Systems :


• Synchronous or Semi-Synchronous

• Often Transactional

• Latency-sensitive




HA Goals of Serving Systems 
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Outages are Big News Items!



And sometimes your failures become 
your brand!
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Motivation

7

Always On work has traditionally focused on the availability of 
Serving Systems :


• Synchronous or Semi-Synchronous

• Often Transactional

• Latency-sensitive




Motivation
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Arguably, the more valuable parts of online services are driven 
by Data Flow Systems (a.k.a. Data Pipelines):


• Asynchronous

• Throughput-sensitive



Data Products
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Serving + Data Pipelines
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A business’s viability is based on its ability to 


	•	keep the site up (Always-On Serving Architectures) & 


	•	maintain engagement (views & clicks) with customers (Always-
On Data Pipelines)


This talk is about Always On Data Pipelines! 




Serving + Data Pipelines
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Serving Data Pipeline

Data Integration Layer

Web Servers

Microservice Layer

Data Layer  
(DB, Search, Caching, 

Graph DB, Object  
Store)

FE Load Balancers
DAGs + Scheduler + Distributed   

Computation Engine



Data Pipeline Challenges
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Data Pipeline Challenges
Problem 1 : The Blast Radius Problem
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The Blast Radius Problem
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• A developer introduces a bug in Data 
Pipeline Job 1 

• Data Pipeline Job 1 reads Data A & writes 
Data B 



The Blast Radius Problem
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• A developer introduces a bug in Data 
Pipeline Job 1 

• Data Pipeline Job 1 reads Data A & writes 
Data B 

• Data Pipeline Job 2 reads Data B & writes 
Data C



The Blast Radius Problem
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• A developer introduces a bug in Data 
Pipeline Job 1 

• Data Pipeline Job 1 reads Data A & writes 
Data B 

• Data Pipeline Job 2 reads Data B & writes 
Data C 

• Data Pipeline Job 3 reads Data C & writes 
Data D to a Serving System DB



The Blast Radius Problem
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• A developer introduces a bug in Data 
Pipeline Job 1 

• Data Pipeline Job 1 reads Data A & writes 
Data B 

• Data Pipeline Job 2 reads Data B & writes 
Data C 

• Data Pipeline Job 3 reads Data C & writes 
Data D to a Serving System DB 

• Serving System 4 reads Data D, where 
the bug is discovered! 



The Blast Radius Problem
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•The previous diagram only 
shows one path of a tree 

•The reality is much worse 

•For each data set produced, 
there are multiple consuming 
jobs and hence multiple bad 
downstream outputs



The Blast Radius Problem
An acute pain point
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The Blast Radius Problem
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Detect 
Bug 

Job 1 

Job 2 

Job 3 

Serving System



The Blast Radius Problem
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Detect 
Bug 

Identify 
Cause



Identify Cause
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The Blast Radius Problem
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Detect 
Bug 

Identify 
Cause



The Blast Radius Problem
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Detect 
Bug 

Identify 
Cause

Deploy a Fix



Rollout a Fix & Rerun all Downstream 
Jobs in the Affected Time Window
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The Blast Radius Problem
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Detect 
Bug 

Identify 
Cause

Re_Run 
All Jobs 

over a Time 
Window



Take Aways?
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• The cost in people, time, and morale for a Data Pipeline bug is 
high and they can occur frequently.

• In most areas of software, testing is 
invaluable, less so in data pipelines 

• Data Pipeline bugs can be due to a logic 
problem or bad input data! 

• Best Option : Detect & Rollback/Fix Forward



The Blast Radius Solution
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Detect 
Bug 

Identify 
Cause

Re_Run 
1 Job



Data Pipeline Challenges
Timeliness
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Timeliness

Job 1 Job 2 Job 3

Definition : job = workflow = DAG of tasks 

Job 3’s output is 
pushed to a 

serving system 



Timeliness

Run 1 : Monday

Run 2 : Tuesday

Run 3 : Wednesday

Consider the Daily Run Schedule below: 
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Timeliness

 Within Time SLA OUT

Run 4

Run 5

R
u
n 
  
6



Timeliness
Why do jobs get slower?
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Timeliness
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new features

Timeliness
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Algo taking longer

Timeliness
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Algo bug fix

Timeliness
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Algo bug fixes

Timeliness
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new features

Timeliness



Take Aways?
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• Data Science & Engineering work is a virtuous 
cycle of adding features (and the like) + tuning 
performance 

• Latency does matter (a bit) 



Design Goals
Desirable Qualities of a Resilient Data Pipeline

41



42

Desirable Qualities of a Resilient 
Data Pipeline

OperabilityCorrectness

Timeliness Cost
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Desirable Qualities of a Resilient 
Data Pipeline

OperabilityCorrectness

Timeliness Cost

• Data Integrity (no loss, etc…) 
• Expected data distributions 

• All output within time-bound SLAs 

• Fine-grained Monitoring & 
Alerting of Correctness & 
Timeliness SLAs 

• Quick Recoverability 

• Pay-as-you-go 



Quickly Recoverable
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•  Bugs happen!  

•  Bugs in Predictive Data Pipelines have a large blast radius 

•  Optimize for MTTR 



Implementation
Using AWS to meet Design Goals
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SQS
Simple Queue Service
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SQS - Overview
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AWS’s low-latency, highly scalable, highly available message 
queue

Infinitely Scalable Queue (though not FIFO)

Low End-to-end latency (generally sub-second)

Pull-based



visibility  
timer 

SQS - Typical Operation Flow
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 1: A consumer reads a message from 
SQS. This starts a visibility timer!



visibility  
timer 

SQS - Typical Operation Flow
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 2: Consumer persists message 
contents to DB



visibility  
timer 

SQS - Typical Operation Flow
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 3: Consumer ACKs message in SQS



visibility  
timer 

SQS - Time Out Example
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 1: A consumer reads a message from 
SQS



visibility  
timer 

SQS - Time Out Example
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 2: Consumer attempts persists 
message contents to DB



visibility  
time out 

SQS - Time Out Example
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 3: A Visibility Timeout occurs & the 
message becomes visible again.



visibility  
timer 

SQS - Time Out Example
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1

m1

SQS

Step 4: Another consumer reads and 
persists the same message



visibility  
timer 

SQS - Time Out Example
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Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1

SQS

Step 5: Consumer ACKs message in SQS



SQS - Dead Letter Queue
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SQS - DLQ

visibility  
timer

Producer

Producer

Producer

m2m3m4m5

Consumer

Consumer

Consumer

DB

m1

SQS

Redrive 
rule : 2x

m1



SNS
Simple Notification Service
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SNS - Overview

58

Highly Scalable, Highly Available, Push-based Topic Service

Whereas SQS is pull-based, SNS is push-based

There is no message retention & there is a finite retry count

No Reliable Message Delivery

Whereas SQS ensures each message is seen by at least 1 consumer

SNS ensures that each message is seen by every consumer

Reliable Multi-Push

Can we work around this limitation while getting Reliable Multi-push?



SNS + SQS Design Pattern
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m1m2

m1m2

m1m2

SQS Q1

SQS Q2

SNS T1

Reliable 
Multi 
Push 

Reliable 
Message 
Delivery 



SNS + SQS
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Producer

Producer

Producer

m1m2
Consumer

Consumer

Consumer

DB

m1

m1m2

m1m2

SQS Q1

SQS Q2

SNS T1

Consumer

Consumer

Consumer

ES

m1



Batch Pipeline Architecture
Putting the Pieces Together
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But First ….
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What Does Agari Do?
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What Does Agari Do?
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Customers
email 

metadata
apply 
trust 

models

email +  
trust 
score

Agari’s Current Product



What Does Agari Do?
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Enterprise 
Customers email 

metadata
apply 
trust 

models

email md
+  trust 
score

Agari’s Future Product



Batch Pipeline Architecture
Putting the Pieces Together
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Batch Architecture
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•S3 to hold all source & 
computed data (Avro) 

•EMR Spark for scoring + 
summarization 

•Apache Airflow for hourly 
job scheduling 

•SNS+SQS for messaging 

•ASG Importer to import 

•WebApp in Ruby-on-
Rails 



Tackling Cost & Timeliness
Leveraging the AWS Cloud
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Tackling Cost
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Between Hourly Runs During Hourly Runs 



Tackling Timeliness
Auto Scaling Group (ASG)
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ASG - Overview
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What is it? 

A means to automatically scale out/in clusters to handle 
variable load/traffic

A  means to keep a cluster/service of a fixed size always up



ASG - Data Pipeline
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importer

importer

importer

importer

Importer 
ASG

scale out / in
SQS

DB
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Sent

CPU

ACKd/Recvd

CPU-based auto-scaling is 
good at scaling in/out to 
keep the average CPU 
constant

ASG : CPU-based



ASG : CPU-based
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Sent

CPU

Recv

Premature 
Scale-in

Premature Scale-in:  

• The CPU drops to noise-levels before all messages are 
consumed 

• This causes scale in to occur while the last few 
messages are still being committed
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Scale-out: When Visible Messages > 0 (a.k.a. when queue depth > 0) 

Scale-in: When Invisible Messages = 0 (a.k.a. when the last in-flight 
message is ACK’d)

This causes the 
ASG to grow

This causes the 
ASG to shrink

ASG : Queue-based
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Desirable Qualities of a Resilient 
Data Pipeline

OperabilityCorrectness

Timeliness Cost
• ASG 
• EMR Spark 

• ASG 
• EMR Spark 



Tackling Operability & 
Correctness
Leveraging Tooling
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A simple way to author and manage workflows

Provides visual insight into the state & performance of workflow 
runs

Integrates with our alerting and monitoring tools

Tackling Operability : Requirements



Apache Airflow
Workflow Automation & Scheduling
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Airflow: Author DAGs in Python! No need to bundle many config files!

Apache Airflow - Authoring DAGs



81

Airflow: Visualizing a DAG

Apache Airflow - Authoring DAGs
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Airflow: It’s easy to manage multiple DAGs

Apache Airflow - Managing DAGs



Apache Airflow - Perf. Insights
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Airflow: Gantt chart view reveals the slowest tasks for a run!
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Apache Airflow - Perf. Insights
Airflow: Task Duration chart view show task completion time trends!
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Airflow: …And easy to integrate with Ops tools!
Apache Airflow - Alerting
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Apache Airflow - Correctness 
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Desirable Qualities of a Resilient 
Data Pipeline

OperabilityCorrectness

Timeliness Cost



Near-Real Time Data 
Pipelines
Stream Processing @ Agari
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NRT Architecture
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NRT Architecture

90



91

The Architecture is composed of repeated patterns of : 

ASG-based compute

Kinesis streams (i.e. AWS’ managed “Kafka”)

Lambda-based Avro Schema Registry

NRT Architecture



Avro Schema Registry
Avro Schema Storage
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{ 
    "namespace":"com.agari.ep.collector.model", 
    "type":"record", 
    "doc":"This Schema describes the server-side configuration of Agari's Enterprise-Protect Collector", 
    "name":"collector_config", 
    "fields":[ 
        {"name": "email_log_enabled", "type": "boolean"}, 
        {"name": "email_log_interval_seconds", "type": ["int", "null"]}, 
        {"name": "email_log_bucket_name", "type": "string"}, 
        {"name": "phone_home_interval_seconds", "type": "int"}, 
        {"name": "phone_home_sns_topic_ARN", "type": "string"}, 
        {"name": "config_pull_interval_seconds", "type": "int"}, 
        {"name": "receiver_netblocks", "type": ["null", {"type": "array", "items": "string"}]}, 
        { 
            "name": "connecting_ip", 
            "type": [ 
                "null", 
                { 
                    "type": "record", 
                    "name": "connecting_ip_record", 
                    "fields": [ 
                        { 
                            "name": "received_header_index", 
                            "type": "int" 
                        }, 
                   ] 

……

A self-describing (schema’d) serialization format

What is Avro?



What is Avro?
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Typically, the schema is stored in the same file as 
the data it represents

In HDFS, where files are typically large, the 
schema overhead is negligible



Schema Registry
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P

P
C

C

C

Kinesis Stream

In streaming, where each record may be sent individually, the 
schema will be the majority of the data transmitted!

This   is a fat message 

Can we be smarter?



Schema Registry
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P

P
C

C

C

Kinesis Stream

Schema 
Registry 

(Lambda)

Dynamo
DB

get_schema_by_idregister_schema



What is AWS Lambda?
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AWS-hosted code execution environment (Python, Node, Java, 
Ruby)

You upload some code & specify a simple memory and CPU 
profile (e.g. medium CPU, 256 GB memory)

The code will get a new version (e.g. v2)

Code Rollback as easy as setting $LATEST alias to a previous 
version (e.g. $LATEST=v1)



Elastic Stream Processing
How Do We Handle Increasing Traffic?
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Elastic Stream Processing
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P

P
C

C

C

Kinesis Stream



Elastic Stream Processing
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P

P
C

C

C

Kinesis Stream



Elastic Stream Processing
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C

C

C

Kinesis Stream

C

C

C

P

P

Agari 
Scaling 

Utils



Open Source Plans
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In late Q2/early Q3, we plan to open-source our 
cloud tools for :  

• Avro Schema Registry &  

• Agari (Kinesis+ASG) scaling tools 

To be notified, follow @AgariEng & @r39132



Questions? (@r39132)
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