
Resilient Predictive Data
Pipelines

Sid Anand (@r39132)
GOTO Chicago 2016

1

About Me

2

Work [ed | s] @

Committer &
PPMC on

Report to

Co-Chair for

Motivation
Why is a Data Pipeline talk in this Always
Available Track?

3

Motivation

4

Always On work has traditionally focused on the availability of
Serving Systems :

• Synchronous or Semi-Synchronous

• Often Transactional

• Latency-sensitive

HA Goals of Serving Systems

5

Outages are Big News Items!

And sometimes your failures become
your brand!

6

Motivation

7

Always On work has traditionally focused on the availability of
Serving Systems :

• Synchronous or Semi-Synchronous

• Often Transactional

• Latency-sensitive

Motivation

8

Arguably, the more valuable parts of online services are driven
by Data Flow Systems (a.k.a. Data Pipelines):

• Asynchronous

• Throughput-sensitive

Data Products

9

Serving + Data Pipelines

10

A business’s viability is based on its ability to

	•	keep the site up (Always-On Serving Architectures) &

	•	maintain engagement (views & clicks) with customers (Always-
On Data Pipelines)

This talk is about Always On Data Pipelines!

Serving + Data Pipelines

11

Serving Data Pipeline

Data Integration Layer

Web Servers

Microservice Layer

Data Layer
(DB, Search, Caching,

Graph DB, Object
Store)

FE Load Balancers
DAGs + Scheduler + Distributed

Computation Engine

Data Pipeline Challenges

12

Data Pipeline Challenges
Problem 1 : The Blast Radius Problem

13

The Blast Radius Problem

14

• A developer introduces a bug in Data
Pipeline Job 1

• Data Pipeline Job 1 reads Data A & writes
Data B

The Blast Radius Problem

15

• A developer introduces a bug in Data
Pipeline Job 1

• Data Pipeline Job 1 reads Data A & writes
Data B

• Data Pipeline Job 2 reads Data B & writes
Data C

The Blast Radius Problem

16

• A developer introduces a bug in Data
Pipeline Job 1

• Data Pipeline Job 1 reads Data A & writes
Data B

• Data Pipeline Job 2 reads Data B & writes
Data C

• Data Pipeline Job 3 reads Data C & writes
Data D to a Serving System DB

The Blast Radius Problem

17

• A developer introduces a bug in Data
Pipeline Job 1

• Data Pipeline Job 1 reads Data A & writes
Data B

• Data Pipeline Job 2 reads Data B & writes
Data C

• Data Pipeline Job 3 reads Data C & writes
Data D to a Serving System DB

• Serving System 4 reads Data D, where
the bug is discovered!

The Blast Radius Problem

18

•The previous diagram only
shows one path of a tree

•The reality is much worse

•For each data set produced,
there are multiple consuming
jobs and hence multiple bad
downstream outputs

The Blast Radius Problem
An acute pain point

19

The Blast Radius Problem

20

Detect
Bug

Job 1

Job 2

Job 3

Serving System

The Blast Radius Problem

21

Detect
Bug

Identify
Cause

Identify Cause

22

The Blast Radius Problem

23

Detect
Bug

Identify
Cause

The Blast Radius Problem

24

Detect
Bug

Identify
Cause

Deploy a Fix

Rollout a Fix & Rerun all Downstream
Jobs in the Affected Time Window

25

The Blast Radius Problem

26

Detect
Bug

Identify
Cause

Re_Run
All Jobs

over a Time
Window

Take Aways?

27

• The cost in people, time, and morale for a Data Pipeline bug is
high and they can occur frequently.

• In most areas of software, testing is
invaluable, less so in data pipelines

• Data Pipeline bugs can be due to a logic
problem or bad input data!

• Best Option : Detect & Rollback/Fix Forward

The Blast Radius Solution

28

Detect
Bug

Identify
Cause

Re_Run
1 Job

Data Pipeline Challenges
Timeliness

29

Timeliness

Job 1 Job 2 Job 3

Definition : job = workflow = DAG of tasks

Job 3’s output is
pushed to a

serving system

Timeliness

Run 1 : Monday

Run 2 : Tuesday

Run 3 : Wednesday

Consider the Daily Run Schedule below:

32

Timeliness

 Within Time SLA OUT

Run 4

Run 5

R
u
n

6

Timeliness
Why do jobs get slower?

33

34

Timeliness

35

new features

Timeliness

36

Algo taking longer

Timeliness

37

Algo bug fix

Timeliness

38

Algo bug fixes

Timeliness

39

new features

Timeliness

Take Aways?

40

• Data Science & Engineering work is a virtuous
cycle of adding features (and the like) + tuning
performance

• Latency does matter (a bit)

Design Goals
Desirable Qualities of a Resilient Data Pipeline

41

42

Desirable Qualities of a Resilient
Data Pipeline

OperabilityCorrectness

Timeliness Cost

43

Desirable Qualities of a Resilient
Data Pipeline

OperabilityCorrectness

Timeliness Cost

• Data Integrity (no loss, etc…)
• Expected data distributions

• All output within time-bound SLAs

• Fine-grained Monitoring &
Alerting of Correctness &
Timeliness SLAs

• Quick Recoverability

• Pay-as-you-go

Quickly Recoverable

44

• Bugs happen!

• Bugs in Predictive Data Pipelines have a large blast radius

• Optimize for MTTR

Implementation
Using AWS to meet Design Goals

45

SQS
Simple Queue Service

46

SQS - Overview

47

AWS’s low-latency, highly scalable, highly available message
queue

Infinitely Scalable Queue (though not FIFO)

Low End-to-end latency (generally sub-second)

Pull-based

visibility
timer

SQS - Typical Operation Flow

48

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 1: A consumer reads a message from
SQS. This starts a visibility timer!

visibility
timer

SQS - Typical Operation Flow

49

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 2: Consumer persists message
contents to DB

visibility
timer

SQS - Typical Operation Flow

50

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 3: Consumer ACKs message in SQS

visibility
timer

SQS - Time Out Example

51

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 1: A consumer reads a message from
SQS

visibility
timer

SQS - Time Out Example

52

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 2: Consumer attempts persists
message contents to DB

visibility
time out

SQS - Time Out Example

53

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1SQS

Step 3: A Visibility Timeout occurs & the
message becomes visible again.

visibility
timer

SQS - Time Out Example

54

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1

m1

SQS

Step 4: Another consumer reads and
persists the same message

visibility
timer

SQS - Time Out Example

55

Producer

Producer

Producer

m1m2m3m4m5

Consumer

Consumer

Consumer

DB

m1

SQS

Step 5: Consumer ACKs message in SQS

SQS - Dead Letter Queue

56

SQS - DLQ

visibility
timer

Producer

Producer

Producer

m2m3m4m5

Consumer

Consumer

Consumer

DB

m1

SQS

Redrive
rule : 2x

m1

SNS
Simple Notification Service

57

SNS - Overview

58

Highly Scalable, Highly Available, Push-based Topic Service

Whereas SQS is pull-based, SNS is push-based

There is no message retention & there is a finite retry count

No Reliable Message Delivery

Whereas SQS ensures each message is seen by at least 1 consumer

SNS ensures that each message is seen by every consumer

Reliable Multi-Push

Can we work around this limitation while getting Reliable Multi-push?

SNS + SQS Design Pattern

59

m1m2

m1m2

m1m2

SQS Q1

SQS Q2

SNS T1

Reliable
Multi
Push

Reliable
Message
Delivery

SNS + SQS

60

Producer

Producer

Producer

m1m2
Consumer

Consumer

Consumer

DB

m1

m1m2

m1m2

SQS Q1

SQS Q2

SNS T1

Consumer

Consumer

Consumer

ES

m1

Batch Pipeline Architecture
Putting the Pieces Together

61

But First ….

62

What Does Agari Do?

63

What Does Agari Do?

64

Customers
email

metadata
apply
trust

models

email +
trust
score

Agari’s Current Product

What Does Agari Do?

65

Enterprise
Customers email

metadata
apply
trust

models

email md
+ trust
score

Agari’s Future Product

Batch Pipeline Architecture
Putting the Pieces Together

66

Batch Architecture

67

•S3 to hold all source &
computed data (Avro)

•EMR Spark for scoring +
summarization

•Apache Airflow for hourly
job scheduling

•SNS+SQS for messaging

•ASG Importer to import

•WebApp in Ruby-on-
Rails

Tackling Cost & Timeliness
Leveraging the AWS Cloud

68

Tackling Cost

69

Between Hourly Runs During Hourly Runs

Tackling Timeliness
Auto Scaling Group (ASG)

70

ASG - Overview

71

What is it?

A means to automatically scale out/in clusters to handle
variable load/traffic

A means to keep a cluster/service of a fixed size always up

ASG - Data Pipeline

72

importer

importer

importer

importer

Importer
ASG

scale out / in
SQS

DB

73

Sent

CPU

ACKd/Recvd

CPU-based auto-scaling is
good at scaling in/out to
keep the average CPU
constant

ASG : CPU-based

ASG : CPU-based

74

Sent

CPU

Recv

Premature
Scale-in

Premature Scale-in:

• The CPU drops to noise-levels before all messages are
consumed

• This causes scale in to occur while the last few
messages are still being committed

75

Scale-out: When Visible Messages > 0 (a.k.a. when queue depth > 0)

Scale-in: When Invisible Messages = 0 (a.k.a. when the last in-flight
message is ACK’d)

This causes the
ASG to grow

This causes the
ASG to shrink

ASG : Queue-based

76

Desirable Qualities of a Resilient
Data Pipeline

OperabilityCorrectness

Timeliness Cost
• ASG
• EMR Spark

• ASG
• EMR Spark

Tackling Operability &
Correctness
Leveraging Tooling

77

78

A simple way to author and manage workflows

Provides visual insight into the state & performance of workflow
runs

Integrates with our alerting and monitoring tools

Tackling Operability : Requirements

Apache Airflow
Workflow Automation & Scheduling

79

80

Airflow: Author DAGs in Python! No need to bundle many config files!

Apache Airflow - Authoring DAGs

81

Airflow: Visualizing a DAG

Apache Airflow - Authoring DAGs

82

Airflow: It’s easy to manage multiple DAGs

Apache Airflow - Managing DAGs

Apache Airflow - Perf. Insights

83

Airflow: Gantt chart view reveals the slowest tasks for a run!

84

Apache Airflow - Perf. Insights
Airflow: Task Duration chart view show task completion time trends!

85

Airflow: …And easy to integrate with Ops tools!
Apache Airflow - Alerting

86

Apache Airflow - Correctness

87

Desirable Qualities of a Resilient
Data Pipeline

OperabilityCorrectness

Timeliness Cost

Near-Real Time Data
Pipelines
Stream Processing @ Agari

88

NRT Architecture

89

NRT Architecture

90

91

The Architecture is composed of repeated patterns of :

ASG-based compute

Kinesis streams (i.e. AWS’ managed “Kafka”)

Lambda-based Avro Schema Registry

NRT Architecture

Avro Schema Registry
Avro Schema Storage

92

93

{
 "namespace":"com.agari.ep.collector.model",
 "type":"record",
 "doc":"This Schema describes the server-side configuration of Agari's Enterprise-Protect Collector",
 "name":"collector_config",
 "fields":[
 {"name": "email_log_enabled", "type": "boolean"},
 {"name": "email_log_interval_seconds", "type": ["int", "null"]},
 {"name": "email_log_bucket_name", "type": "string"},
 {"name": "phone_home_interval_seconds", "type": "int"},
 {"name": "phone_home_sns_topic_ARN", "type": "string"},
 {"name": "config_pull_interval_seconds", "type": "int"},
 {"name": "receiver_netblocks", "type": ["null", {"type": "array", "items": "string"}]},
 {
 "name": "connecting_ip",
 "type": [
 "null",
 {
 "type": "record",
 "name": "connecting_ip_record",
 "fields": [
 {
 "name": "received_header_index",
 "type": "int"
 },
]

……

A self-describing (schema’d) serialization format

What is Avro?

What is Avro?

94

Typically, the schema is stored in the same file as
the data it represents

In HDFS, where files are typically large, the
schema overhead is negligible

Schema Registry

95

P

P
C

C

C

Kinesis Stream

In streaming, where each record may be sent individually, the
schema will be the majority of the data transmitted!

This is a fat message

Can we be smarter?

Schema Registry

96

P

P
C

C

C

Kinesis Stream

Schema
Registry

(Lambda)

Dynamo
DB

get_schema_by_idregister_schema

What is AWS Lambda?

97

AWS-hosted code execution environment (Python, Node, Java,
Ruby)

You upload some code & specify a simple memory and CPU
profile (e.g. medium CPU, 256 GB memory)

The code will get a new version (e.g. v2)

Code Rollback as easy as setting $LATEST alias to a previous
version (e.g. $LATEST=v1)

Elastic Stream Processing
How Do We Handle Increasing Traffic?

98

Elastic Stream Processing

99

P

P
C

C

C

Kinesis Stream

Elastic Stream Processing

100

P

P
C

C

C

Kinesis Stream

Elastic Stream Processing

101

C

C

C

Kinesis Stream

C

C

C

P

P

Agari
Scaling

Utils

Open Source Plans

102

In late Q2/early Q3, we plan to open-source our
cloud tools for :

• Avro Schema Registry &

• Agari (Kinesis+ASG) scaling tools

To be notified, follow @AgariEng & @r39132

Questions? (@r39132)

103

