
Language as an Interface
Spencer Kelly

The pope is catholic.

language as an interfacelanguage as data

introduction

(@spencermountain)
introduction

introduction

problem

problem

problem

london in the rain london in the

in the rain

london in

in the

the rain

london

in

the

rain

4-gram: 3-gram: 2-gram: 1-gram:

10 requests per keystroke
4-words -

5-words : 15 6-words : 21 7-words : 28 8-words : 36

problem

london in the rain

london in the

in the rain

london in

in the

the rain

London

in

the

rain

in

the

london in the

in the rain

london in

the rain

Stopwords
blacklist:

Edge gram
filter:

Redundancy
check:

#1

#2

#3

in the

“rain”

“london”

“london in the rain”

problem

● NLTK - excellent, huge, python

● Stanford parser - excellent, huge, java

Alchemy,

TextRazor,

OpenCalais,

Embedly,

Zemanta

Or an offsite API?● Freeling - excellent, huge, C++

● Illinois tagger - excellent, huge, java

When all you’ve got is a jackhammer..

niche

Can it be hacked?

tldr: yes. ȋ

niche

Zipfs law

The top 10 words account for 25% of language.

The top 100 words account for 50% of language.

The top 50,000 words account for 95% of language.

niche

How big is a language?

Shakespeare - 35,000

Wordnet - 200,000 !

OED - 600,000 !

niche

602 kb
uncompressed

50,000
different words

An average person will ever hear

~4 lookups in binary search

niche

first, let’s kill the

nouns 70%

process

180 kb
uncompressed

Noun Verb Adjective Adverb

Tomato
Tomatoes

Toronto
Torontonian

Speak

Spoke
Speaking
will speak

have spoken
had spoken

...

nice

nicer
nicest

quickly

quicklier
quickliest

“awesome”“awesomeify”

improveify your vocabularies

“quickly”“quick”
n/2.3
Each word

*not handsome *not truly*not is*not economics

“tomatoey”“tomato”

“speak”“speaker”

“aggressive”“agressiveness”

“civil”“civilize”

niche

then, let’s conjugate
our verbs

process

110 kb
uncompressed

process

jQuery
 256kb

d3js
 330kb

react
653kb110 kb

uncompressed lodash
 503kb

the whole
english

language
110kb

Ok, let’s roll our own POS tagger..

(what could go rong?)

process

1) Lexicon
2) Suffix regexes
3) Sentence-level markov chain

Suffix rules

process

Grammar rules - markov

She could walk the walk .

before: Verb - Det - Verb

after: Verb - Det - Noun

process

“Unreasonable effectiveness” of rule-based taggers-

● a 1,000 word lexicon - 45% precision

● fallback to [Noun] - 70% precision

● a little regex - 74% precision

● a little grammar in it - 81% precision

process

t.text(“keep on rocking in the free world”)
t.negate()
//“don’t keep on rocking in the free world.”

outcome

t.text(“it is a cool library”)
t.toValleyGirl()
//“so, it is like, a cool library.”

outcome

We gave the monkeys the
bananas,

..because they were ripe. ..because they were hungry.

outcome

We gave the monkeys the bananas

 [Pr] [Verb] [Dt] [Noun] [Dt] [Noun]

list of letters

POS-tagging

Dependency parser We give [Noun] [Noun]

� ʩ ƞ ĀĀ
[act / transfer / voluntary] [genus / monkey]

Knowledge engine
[plant / banana]

outcome

#TODOFML

● Mutable/Immutable API
● Speed, performance testing
● Romantic-language verb conjugations
● ‘bl.ocks.org’ of demos and docs

outcome

npm install --wooyeah

@spencermountain

Slack group, mailing list, github, Toronto/coffee

