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What is Erlang?
4 Concurrency-oriented functional language

4 Strong dynamic typing

4 Small language, just a few elements

4 Erlang VM runs BEAM bytecode

4 Built-in distribution
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Erlang's Origins
4 Telecommunications domain, mid-80s

4 Ericsson Computer Science Labs (CSL)

4 Joe Armstrong, Robert Virding and Mike Williams 
started researching & prototyping Erlang

4 Goal: develop highly reliable telephone switches 
better and faster
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Telecom Switch Requirements
4 Large number of concurrent activities

4 Tolerance of software and hardware failures

4 Large software systems distributed across multiple 
computers

4 Continuous operations for years

4 Live updates and maintenance
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Today's Web/Cloud/μService Apps

4 Large number of concurrent activities

4 Tolerance of software and hardware failures

4 Large software systems distributed across multiple 
computers

4 Continuous operations for years

4 Live updates and maintenance
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Multi-language VM
4 Erlang

4 Elixir

4 Lisp-Flavored Erlang (LFE) & Joxa

4 Efene

4 and more
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Processes
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Erlang Process Model
4 Lightweight green threads

4 One VM instance can host millions of concurrent 
processes

4 Erlang runtime provides process scheduling and 
preemptive multitasking

4 Processes can link to or monitor other processes
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Process Execution
4 A process runs a function (which may call other 

functions)

4 The process stops when

4 its function ends

4 an unexpected exception occurs

4 something else kills it
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Process Preemption
4 The runtime preempts processes based on various 

factors:

4 executing 2000 reductions

4 waiting for a message

4 I/O

4 and more
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Erlang Process Architecture
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Erlang Process Architecture
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Let It Crash
Joe Armstrong's PhD thesis recommends:

"Let some other process do the error recovery."

"If you can’t do what you want to do, die."

"Let it crash."

"Do not program defensively."
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http://www.erlang.org/download/armstrong_thesis_2003.pdf


Concurrency for Reliability
4 Isolation: processes interact via message passing

4 Recovery: via links and monitors, processes can take 
action when other processes die

4 Distribution: process model works across nodes
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Erlang Overview
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4 Atoms, tuples, lists, numbers, records, maps, 
binaries, functions, modules, process IDs, references 
(unique IDs), ports

4 Atoms (lowercase words) are named values

4 Variables (capitalized words) are immutable
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4 Function names and module names are atoms

4 Variables live in functions

4 Functions live in modules

4 Functions are identified by name and arity

4 Or they can be anonymous
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4 Functions can be

4 exported, i.e. visible to other modules

4 not exported, and so module internal

4 passed as arguments, returned from functions, 
stored in structures, etc.
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4 Assignment is pattern matching

%% Var is unbound, so bind to value 2 to it
Var = 2,

%% Var is bound to 2, match it against 2: success
Var = 2,

%% Var is bound to 2, match it against 3: failure
Var = 3.    % badmatch exception!
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4 For multiple clauses of same name/arity functions, 
matching determines which is called

foo([]) ->
    %% perform foo for the empty list;
foo(List) ->
    %% perform foo for the non-empty list or any other value.
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4 case expressions perform pattern matching

4 case expressions are used a lot

4 Pattern matching in function heads too

foo(A, A) ->
    %% a clause expecting two equal args

bar([H|T]) ->
    %% match the arg to a non-empty list,
    %% bind H to head, T to tail of list
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4 ProcessId ! Message means

send Message to the process ProcessId

4 Processes can have names

4 Local and global registries are provided
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OTP
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OTP1 Augments Erlang
4 Libraries

4 Tools

4 Design principles

1 OTP stands for "Open Telecom Platform", but it's not telecom-specific so today we just refer to it as 
OTP.
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Design Principles
4 behaviors: frameworks for common problems/

patterns

4 supervision trees: hierarchies of supervisor and 
worker processes

4 applications: assembly of supervision trees, 
resources, and config data
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Design Principles
4 releases: packaged applications

4 nodes: deployed releases

4 release handling: upgrading/downgrading releases

4 clusters: interconnected nodes
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Other OTP Tools & Apps
4 Operations, management, monitoring

4 Release packaging

4 Debugging, testing, performance, coverage

4 And more
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Behaviors
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Standard Behaviors
4 gen_server: supports client-server pattern

4 gen_fsm and gen_statem2: state machines

4 gen_event: event handling framework

2 gen_statem is new in Erlang 19, June 2016
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Standard Behaviors
4 supervisor: manage worker processes

4 application: connect your app to the rest of OTP
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Purpose of Behaviors
4 Separate generic reusable code from solution-

specific code

4 Handle generic corner cases

4 Behavior modules provide generic reusable solutions 
to common problems
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Purpose of Behaviors
4 Ensure OTP compatibility so solutions can be managed 

properly

4 starting & stopping

4 observing & monitoring

4 debugging

4 packaging

4 live upgrades
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Behavior Example
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Key/Value Server Process
4 Store key/value pairs

4 Allow lookup by key

4 Allow deletion by key

4 Serve multiple client processes
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Problems
4 Keeping server state

4 Starting and stopping

4 Clients finding the server

4 Handling client requests

4 Dealing with errors
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Process State
4 Erlang variables are immutable

4 No global variables

4 How can a long-running KV server process hold 
state?
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Receive-Evaluate Loop
4 Processes execute functions

4 For this case: a loop function

4 operates on current state

4 calls itself with new state

4 tail recursive , so no stack growth
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loop(State) ->
    NewState =
        receive
            %% handle messages here
            %% messages can affect State
        end,
    loop(NewState).
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General Server Process
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Server Start/Stop
4 Starting: one process spawns another

4 Stopping: send a stop message
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Server Start
-module(kv).
-export([start/0, stop/0]).

start() ->
    Pid = spawn(kv, loop, [#{}]),
    register(kv, Pid),
    {ok, Pid}.

4 Spawn a process running kv:loop/1 with initial state of #{} (an empty 
map).

4 Register the process under the name kv
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Client Code for Stop
stop() ->
    kv ! stop,
    ok.

Send a message to process kv to tell it to stop.
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Server Code for Stop
loop(State) ->
    receive
        stop ->
            ok
    end.

Receive the stop atom as a message and end the 
recursion.
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Key/Value Server API
-module(kv).
-export([store/2, find/1, delete/1, start/0, stop/0]).

store(Key, Value) ->
    %% store Key and Value.

find(Key) ->
    %% if Key is stored, return {Key,Value}
    %% otherwise, return false.

delete(Key) ->
    %% If Key is stored, delete it along
    %% with its value.
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Client: Store
store(Key, Value) ->
    kv ! {store, Key, Value, self()},
    receive ok -> ok end.

4 Send a store tuple with Key and Value to process kv

4 Tuple contains client's process ID via self()

4 Wait for message ok, then return ok
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Server: Store
loop(State) ->
    receive
        stop -> ok;
        {store, Key, Value, Pid} ->
            NewState = maps:put(Key, Value, State),
            Pid ! ok,
            loop(NewState)
    end.

4 Store the key/value, creates new map

4 Send ok back to client, then loop
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Find and Delete
4 Same idea: send a request tuple to the server

4 Server performs the request

4 Server sends response back to client
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Generic vs. Specific
4 What parts of this code are specific to a KV service?

4 What parts are generic to client-server?
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Generic Parts
4 Spawning the server

4 Managing loop state

4 Sending client requests

4 Sending server replies

4 Stopping the server

52



Solution-Specific Parts
4 Initialization at server start

4 The server state

4 Client request contents

4 Servicing requests

4 Server reply contents

4 Any cleanup at server stop
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Behavior Design
4 Behavior generic functions implemented in a 

behavior module

4 Behavior expects to be initialized with a callback 
module providing solution-specific functions

4 Behavior functions call the callback module to handle 
everything not generic
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KV using gen_server
Step 1: define kv as a gen_server callback module

-module(kv).
-behavior(gen_server).
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KV using gen_server
Step 2: export API functions and callback functions

%% API
-export([store/2, find/1, delete/1]).
-export([start_link/0, stop/0]).

%% callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
         terminate/2, code_change/3]).
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Callbacks
4 init/1 called when the gen_server process starts

4 handle_call/3 called to handle request/reply

4 handle_cast/2 called to handle one-way message 
cast
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Callbacks
4 handle_info/2 called to handle any other messages

4 terminate/2 called when the process is about to stop

4 code_change/3 called during release upgrades
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Starting a KV Server

start_link() ->
    gen_server:start_link({local, kv}, kv, [], []).

4 Client calls kv:start_link/0

4 That calls gen_server:start_link/4, with kv as callback 
module

4 gen_server spawn_links KV process and registers it 
locally with the name kv
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Starting a KV Server

init([]) ->
    {ok, #{}}.

4 gen_server calls kv:init/1 callback to complete solution-
specific startup

4 init returns a tuple indicating success (the atom ok) 
along with the initial process state (empty map)

4 This runs in the server process
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Implement store
store(Key, Value) ->
    gen_server:call(kv, {store, Key, Value}).

4 kv:store/3 calls gen_server:call/2

4 This runs in the client process

4 Note: no need to pass client pid
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Implement store callback
handle_call({store, Key, Value}, _From, State) ->
    NewState = maps:put(Key, Value, State),
    {reply, ok, NewState};

4 gen_server:call/2 results in callback to kv:handle_call/3

4 First argument is the store tuple

4 Store key/value into map state, return new map as new 
state

62



Implement find callback
handle_call({find, Key}, _From, State) ->
    Result = case maps:find(Key, State) of
                 {ok, Value} -> {Key, Value};
                 error -> false
             end,
    {reply, Result, State}.

4 Lookup specified Key

4 Return {Key,Value} if found, false otherwise
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Implement stop
stop() ->
    gen_server:stop(kv).

4 gen_server:stop/1 results in terminate/2 getting 
called in the callback module (not shown)
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gen_server:call Internals
Runs in the client process.

1. Monitor the gen_server process in case it dies or is 
already dead

2. Send the request to the gen_server process

3. Wait for reply, default 5 second timeout

4. Return reply to client
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Behaviors and the sys Module
4 Behind the scenes, behaviors handle system 

messages

4 The sys module provides a way to work with system 
messages

4 Handy for debugging callback modules
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sys:trace/2

Eshell V7.3  (abort with ^G)
1> {ok, Pid} = kv:start_link().
{ok,<0.36.0>}
2> sys:trace(Pid, true).
ok
3> kv:find("GOTO").
*DBG* kv got call {find,"GOTO"} from <0.34.0>
*DBG* kv sent false to <0.34.0>, new state #{}
false
4> self().
<0.34.0>
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sys:trace/2

5> kv:store("GOTO", "Chicago").
*DBG* kv got call {store,"GOTO","Chicago"} from <0.34.0>
*DBG* kv sent ok to <0.34.0>,
  new state #{[71,79,84,79]=>[67,104,105,99,97,103,111]}
ok
6> kv:find("GOTO").
*DBG* kv got call {find,"GOTO"} from <0.34.0>
*DBG* kv sent {"GOTO","Chicago"} to <0.34.0>,
  new state #{[71,79,84,79]=>[67,104,105,99,97,103,111]}
{"GOTO","Chicago"}
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sys:get_state/1

4 Examine the current loop state of a behavior:

7> sys:get_state(kv).
#{"GOTO" => "Chicago"}

4 Also handy for debugging: call sys:replace_state/2 
to replace the loop state with a different state
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Applications & Supervisors
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application Behavior
4 application provides an entry-point for an OTP app

4 Allows multiple Erlang components to be combined 
into a release

4 Apps can declare their dependencies on other apps 
to ensure proper start/stop order
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Application Startup
4 Hierarchical sequence

4 The Erlang kernel starts the application_controller process

4 application_controller starts an application master per app

4 each application master calls app behavior start function

4 app behavior starts the top supervisor

4 top supervisor starts its child supervisors and workers
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Application Example
-module(my_app).
-behavior(application).

-export([start/2, stop/1]).

start(_StartType, _StartArgs) ->
    my_top_supervisor:start_link().

stop(_State) ->
    ok.

Application modules are rarely more complicated than this.
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Workers and Supervisors
4 Workers implement application logic

4 Supervisors start child workers or child supervisors

4 Linked to child processes

4 Take action when a child process dies
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The simple core provides a stable base for the entire application
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Supervisor Features
4 Restart strategies

4 one_for_one: a crashed child is restarted

4 one_for_all: a child crashes, all are restarted

4 rest_for_one: crashed child and those after it are restarted

4 simple_one_for_one: used for children added dynamically

4 Max number of restarts per time period

4 supervisor dies if exceeded

4 prevents getting stuck in crash-restart loops
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Supervisor Features
4 Child specifications tell the supervisor how to start each child

4 For example, for kv:

#{id => kv,
  start => {kv, start_link, []},
  restart => permanent,
  shutdown => 2000,
  type => worker,
  modules => [kv]}.
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Process Problems
In the original solution:

4 What if the server dies?

4 What if the server dies while a client is waiting?

4 What if the server takes too long to process a 
request?
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Process Problems Solved
In the gen_server solution:

4 If the server dies, supervisor restarts it

4 If the server dies while a client waits, client's process monitor detects 
it, client exits with an error

4 If the server takes too long, client exits with timeout (default 5 
seconds)

4 The standard behaviors handle all sorts of corner cases that are easy 
to miss
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Summary
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Benefits of Behaviors
4 Handling tricky corner cases

4 Standardized frameworks provide reusable solutions, 
common vocabulary

4 Used in all non-trivial Erlang-based systems

4 Erlang developers understand them and can easily read them

4 Features honed and proven across countless projects, many 
years in production
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Much More to Explore
4 Other behaviors

4 Writing your own behaviors

4 Packaging, deploying

4 Live upgrades

4 Monitoring, tracing, logging
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For More 
Information
4 Designing for Scalability with 

Erlang/OTP, Cesarini & Vinoski

4 Erlang Programming, Cesarini & 
Thompson

4 Stuff Goes Bad: Erlang in Anger, 
Hebert (https://www.erlang-in-
anger.com)

4 For Elixir see http://elixir-lang.org/

83

https://www.erlang-in-anger.com
https://www.erlang-in-anger.com


84


