
A Peek Inside

Erlang's OTP
Steve Vinoski

1



What is Erlang?
4 Concurrency-oriented functional language

4 Strong dynamic typing

4 Small language, just a few elements

4 Erlang VM runs BEAM bytecode

4 Built-in distribution

2



Erlang's Origins
4 Telecommunications domain, mid-80s

4 Ericsson Computer Science Labs (CSL)

4 Joe Armstrong, Robert Virding and Mike Williams 
started researching & prototyping Erlang

4 Goal: develop highly reliable telephone switches 
better and faster

3



Telecom Switch Requirements
4 Large number of concurrent activities

4 Tolerance of software and hardware failures

4 Large software systems distributed across multiple 
computers

4 Continuous operations for years

4 Live updates and maintenance

4



Today's Web/Cloud/μService Apps

4 Large number of concurrent activities

4 Tolerance of software and hardware failures

4 Large software systems distributed across multiple 
computers

4 Continuous operations for years

4 Live updates and maintenance

5



Multi-language VM
4 Erlang

4 Elixir

4 Lisp-Flavored Erlang (LFE) & Joxa

4 Efene

4 and more

6



Processes

7



Erlang Process Model
4 Lightweight green threads

4 One VM instance can host millions of concurrent 
processes

4 Erlang runtime provides process scheduling and 
preemptive multitasking

4 Processes can link to or monitor other processes

8



Process Execution
4 A process runs a function (which may call other 

functions)

4 The process stops when

4 its function ends

4 an unexpected exception occurs

4 something else kills it

9



Process Preemption
4 The runtime preempts processes based on various 

factors:

4 executing 2000 reductions

4 waiting for a message

4 I/O

4 and more

10



Erlang Process Architecture

11



Erlang Process Architecture

12



Erlang Process Architecture

13



Erlang Process Architecture

14



Erlang Process Architecture

15



Let It Crash
Joe Armstrong's PhD thesis recommends:

"Let some other process do the error recovery."

"If you can’t do what you want to do, die."

"Let it crash."

"Do not program defensively."

16

http://www.erlang.org/download/armstrong_thesis_2003.pdf


Concurrency for Reliability
4 Isolation: processes interact via message passing

4 Recovery: via links and monitors, processes can take 
action when other processes die

4 Distribution: process model works across nodes

17



Erlang Overview

18



4 Atoms, tuples, lists, numbers, records, maps, 
binaries, functions, modules, process IDs, references 
(unique IDs), ports

4 Atoms (lowercase words) are named values

4 Variables (capitalized words) are immutable

19



4 Function names and module names are atoms

4 Variables live in functions

4 Functions live in modules

4 Functions are identified by name and arity

4 Or they can be anonymous

20



4 Functions can be

4 exported, i.e. visible to other modules

4 not exported, and so module internal

4 passed as arguments, returned from functions, 
stored in structures, etc.

21



4 Assignment is pattern matching

%% Var is unbound, so bind to value 2 to it
Var = 2,

%% Var is bound to 2, match it against 2: success
Var = 2,

%% Var is bound to 2, match it against 3: failure
Var = 3.    % badmatch exception!

22



4 For multiple clauses of same name/arity functions, 
matching determines which is called

foo([]) ->
    %% perform foo for the empty list;
foo(List) ->
    %% perform foo for the non-empty list or any other value.

23



4 case expressions perform pattern matching

4 case expressions are used a lot

4 Pattern matching in function heads too

foo(A, A) ->
    %% a clause expecting two equal args

bar([H|T]) ->
    %% match the arg to a non-empty list,
    %% bind H to head, T to tail of list

24



4 ProcessId ! Message means

send Message to the process ProcessId

4 Processes can have names

4 Local and global registries are provided

25



OTP

26



OTP1 Augments Erlang
4 Libraries

4 Tools

4 Design principles

1 OTP stands for "Open Telecom Platform", but it's not telecom-specific so today we just refer to it as 
OTP.

27



Design Principles
4 behaviors: frameworks for common problems/

patterns

4 supervision trees: hierarchies of supervisor and 
worker processes

4 applications: assembly of supervision trees, 
resources, and config data

28



Design Principles
4 releases: packaged applications

4 nodes: deployed releases

4 release handling: upgrading/downgrading releases

4 clusters: interconnected nodes

29



Other OTP Tools & Apps
4 Operations, management, monitoring

4 Release packaging

4 Debugging, testing, performance, coverage

4 And more

30



Behaviors

31



Standard Behaviors
4 gen_server: supports client-server pattern

4 gen_fsm and gen_statem2: state machines

4 gen_event: event handling framework

2 gen_statem is new in Erlang 19, June 2016

32



Standard Behaviors
4 supervisor: manage worker processes

4 application: connect your app to the rest of OTP

33



Purpose of Behaviors
4 Separate generic reusable code from solution-

specific code

4 Handle generic corner cases

4 Behavior modules provide generic reusable solutions 
to common problems

34



Purpose of Behaviors
4 Ensure OTP compatibility so solutions can be managed 

properly

4 starting & stopping

4 observing & monitoring

4 debugging

4 packaging

4 live upgrades

35



Behavior Example

36



Key/Value Server Process
4 Store key/value pairs

4 Allow lookup by key

4 Allow deletion by key

4 Serve multiple client processes

37



Problems
4 Keeping server state

4 Starting and stopping

4 Clients finding the server

4 Handling client requests

4 Dealing with errors

38



Process State
4 Erlang variables are immutable

4 No global variables

4 How can a long-running KV server process hold 
state?

39



Receive-Evaluate Loop
4 Processes execute functions

4 For this case: a loop function

4 operates on current state

4 calls itself with new state

4 tail recursive , so no stack growth

40



loop(State) ->
    NewState =
        receive
            %% handle messages here
            %% messages can affect State
        end,
    loop(NewState).

41



General Server Process

42



Server Start/Stop
4 Starting: one process spawns another

4 Stopping: send a stop message

43



Server Start
-module(kv).
-export([start/0, stop/0]).

start() ->
    Pid = spawn(kv, loop, [#{}]),
    register(kv, Pid),
    {ok, Pid}.

4 Spawn a process running kv:loop/1 with initial state of #{} (an empty 
map).

4 Register the process under the name kv

44



Client Code for Stop
stop() ->
    kv ! stop,
    ok.

Send a message to process kv to tell it to stop.

45



Server Code for Stop
loop(State) ->
    receive
        stop ->
            ok
    end.

Receive the stop atom as a message and end the 
recursion.

46



Key/Value Server API
-module(kv).
-export([store/2, find/1, delete/1, start/0, stop/0]).

store(Key, Value) ->
    %% store Key and Value.

find(Key) ->
    %% if Key is stored, return {Key,Value}
    %% otherwise, return false.

delete(Key) ->
    %% If Key is stored, delete it along
    %% with its value.

47



Client: Store
store(Key, Value) ->
    kv ! {store, Key, Value, self()},
    receive ok -> ok end.

4 Send a store tuple with Key and Value to process kv

4 Tuple contains client's process ID via self()

4 Wait for message ok, then return ok

48



Server: Store
loop(State) ->
    receive
        stop -> ok;
        {store, Key, Value, Pid} ->
            NewState = maps:put(Key, Value, State),
            Pid ! ok,
            loop(NewState)
    end.

4 Store the key/value, creates new map

4 Send ok back to client, then loop

49



Find and Delete
4 Same idea: send a request tuple to the server

4 Server performs the request

4 Server sends response back to client

50



Generic vs. Specific
4 What parts of this code are specific to a KV service?

4 What parts are generic to client-server?

51



Generic Parts
4 Spawning the server

4 Managing loop state

4 Sending client requests

4 Sending server replies

4 Stopping the server

52



Solution-Specific Parts
4 Initialization at server start

4 The server state

4 Client request contents

4 Servicing requests

4 Server reply contents

4 Any cleanup at server stop
53



Behavior Design
4 Behavior generic functions implemented in a 

behavior module

4 Behavior expects to be initialized with a callback 
module providing solution-specific functions

4 Behavior functions call the callback module to handle 
everything not generic

54



KV using gen_server
Step 1: define kv as a gen_server callback module

-module(kv).
-behavior(gen_server).

55



KV using gen_server
Step 2: export API functions and callback functions

%% API
-export([store/2, find/1, delete/1]).
-export([start_link/0, stop/0]).

%% callbacks
-export([init/1, handle_call/3, handle_cast/2, handle_info/2,
         terminate/2, code_change/3]).

56



Callbacks
4 init/1 called when the gen_server process starts

4 handle_call/3 called to handle request/reply

4 handle_cast/2 called to handle one-way message 
cast

57



Callbacks
4 handle_info/2 called to handle any other messages

4 terminate/2 called when the process is about to stop

4 code_change/3 called during release upgrades

58



Starting a KV Server

start_link() ->
    gen_server:start_link({local, kv}, kv, [], []).

4 Client calls kv:start_link/0

4 That calls gen_server:start_link/4, with kv as callback 
module

4 gen_server spawn_links KV process and registers it 
locally with the name kv

59



Starting a KV Server

init([]) ->
    {ok, #{}}.

4 gen_server calls kv:init/1 callback to complete solution-
specific startup

4 init returns a tuple indicating success (the atom ok) 
along with the initial process state (empty map)

4 This runs in the server process

60



Implement store
store(Key, Value) ->
    gen_server:call(kv, {store, Key, Value}).

4 kv:store/3 calls gen_server:call/2

4 This runs in the client process

4 Note: no need to pass client pid

61



Implement store callback
handle_call({store, Key, Value}, _From, State) ->
    NewState = maps:put(Key, Value, State),
    {reply, ok, NewState};

4 gen_server:call/2 results in callback to kv:handle_call/3

4 First argument is the store tuple

4 Store key/value into map state, return new map as new 
state

62



Implement find callback
handle_call({find, Key}, _From, State) ->
    Result = case maps:find(Key, State) of
                 {ok, Value} -> {Key, Value};
                 error -> false
             end,
    {reply, Result, State}.

4 Lookup specified Key

4 Return {Key,Value} if found, false otherwise
63



Implement stop
stop() ->
    gen_server:stop(kv).

4 gen_server:stop/1 results in terminate/2 getting 
called in the callback module (not shown)

64



gen_server:call Internals
Runs in the client process.

1. Monitor the gen_server process in case it dies or is 
already dead

2. Send the request to the gen_server process

3. Wait for reply, default 5 second timeout

4. Return reply to client

65



Behaviors and the sys Module
4 Behind the scenes, behaviors handle system 

messages

4 The sys module provides a way to work with system 
messages

4 Handy for debugging callback modules

66



sys:trace/2

Eshell V7.3  (abort with ^G)
1> {ok, Pid} = kv:start_link().
{ok,<0.36.0>}
2> sys:trace(Pid, true).
ok
3> kv:find("GOTO").
*DBG* kv got call {find,"GOTO"} from <0.34.0>
*DBG* kv sent false to <0.34.0>, new state #{}
false
4> self().
<0.34.0>

67



sys:trace/2

5> kv:store("GOTO", "Chicago").
*DBG* kv got call {store,"GOTO","Chicago"} from <0.34.0>
*DBG* kv sent ok to <0.34.0>,
  new state #{[71,79,84,79]=>[67,104,105,99,97,103,111]}
ok
6> kv:find("GOTO").
*DBG* kv got call {find,"GOTO"} from <0.34.0>
*DBG* kv sent {"GOTO","Chicago"} to <0.34.0>,
  new state #{[71,79,84,79]=>[67,104,105,99,97,103,111]}
{"GOTO","Chicago"}

68



sys:get_state/1

4 Examine the current loop state of a behavior:

7> sys:get_state(kv).
#{"GOTO" => "Chicago"}

4 Also handy for debugging: call sys:replace_state/2 
to replace the loop state with a different state

69



Applications & Supervisors

70



application Behavior
4 application provides an entry-point for an OTP app

4 Allows multiple Erlang components to be combined 
into a release

4 Apps can declare their dependencies on other apps 
to ensure proper start/stop order

71



Application Startup
4 Hierarchical sequence

4 The Erlang kernel starts the application_controller process

4 application_controller starts an application master per app

4 each application master calls app behavior start function

4 app behavior starts the top supervisor

4 top supervisor starts its child supervisors and workers

72



Application Example
-module(my_app).
-behavior(application).

-export([start/2, stop/1]).

start(_StartType, _StartArgs) ->
    my_top_supervisor:start_link().

stop(_State) ->
    ok.

Application modules are rarely more complicated than this.

73



Workers and Supervisors
4 Workers implement application logic

4 Supervisors start child workers or child supervisors

4 Linked to child processes

4 Take action when a child process dies

74



The simple core provides a stable base for the entire application

75



Supervisor Features
4 Restart strategies

4 one_for_one: a crashed child is restarted

4 one_for_all: a child crashes, all are restarted

4 rest_for_one: crashed child and those after it are restarted

4 simple_one_for_one: used for children added dynamically

4 Max number of restarts per time period

4 supervisor dies if exceeded

4 prevents getting stuck in crash-restart loops

76



Supervisor Features
4 Child specifications tell the supervisor how to start each child

4 For example, for kv:

#{id => kv,
  start => {kv, start_link, []},
  restart => permanent,
  shutdown => 2000,
  type => worker,
  modules => [kv]}.

77



Process Problems
In the original solution:

4 What if the server dies?

4 What if the server dies while a client is waiting?

4 What if the server takes too long to process a 
request?

78



Process Problems Solved
In the gen_server solution:

4 If the server dies, supervisor restarts it

4 If the server dies while a client waits, client's process monitor detects 
it, client exits with an error

4 If the server takes too long, client exits with timeout (default 5 
seconds)

4 The standard behaviors handle all sorts of corner cases that are easy 
to miss

79



Summary

80



Benefits of Behaviors
4 Handling tricky corner cases

4 Standardized frameworks provide reusable solutions, 
common vocabulary

4 Used in all non-trivial Erlang-based systems

4 Erlang developers understand them and can easily read them

4 Features honed and proven across countless projects, many 
years in production

81



Much More to Explore
4 Other behaviors

4 Writing your own behaviors

4 Packaging, deploying

4 Live upgrades

4 Monitoring, tracing, logging

82



For More 
Information
4 Designing for Scalability with 

Erlang/OTP, Cesarini & Vinoski

4 Erlang Programming, Cesarini & 
Thompson

4 Stuff Goes Bad: Erlang in Anger, 
Hebert (https://www.erlang-in-
anger.com)

4 For Elixir see http://elixir-lang.org/

83

https://www.erlang-in-anger.com
https://www.erlang-in-anger.com


84


