
<Insert Picture Here>

Project Lambda: To Multicore and Beyond

Brian Goetz
Java Language Architect, Oracle Corporation

2

The following is intended to outline our general
product direction. It is intended for information
purposes only, and may not be incorporated into any
contract. It is not a commitment to deliver any
material, code, or functionality, and should not be
relied upon in making purchasing decisions.
The development, release, and timing of any
features or functionality described for Oracle’s
products remains at the sole discretion of Oracle.

3

Introduction to Project Lambda

•  OpenJDK Project Lambda started Dec 2009

•  Targeted for Java SE 8

•  Aims to support programming in a multicore environment by
adding closures and related features to the Java SE platform

4

MOTIVATION

5

Hardware trends – the future is parallel

•  Chip designers have
nowhere to go but parallel
–  Moore’s Law gives more

cores, not faster cores
–  Have hit the wall in power

dissipation, instruction-
level parallelism, clock
rate, and chip scale

•  We must learn to write
software that parallelizes
gracefully

(Graphic courtesy Herb Sutter)

6

Developers need simple parallel libraries

•  One of Java’s strengths has always been its libraries
–  Better libraries are key to making parallelization easier
–  Ideally, let the libraries worry about algorithmic decomposition,

scheduling, computation topology

•  Obvious place to start: parallel operations in collections
–  filter, sort, map/reduce
–  select, collect, detect, reject

•  High-level operations tend to improve the readability of code, as
well as its performance

•  Why don’t we see more parallel libraries today?

7

Without more language support
for parallel idioms,
people will instinctively reach for
serial idioms

8

The biggest serial idiom of all: the for loop

double highestScore = 0.0;
for (Student s : students) {
 if (s.gradYear == 2010) {
 if (s.score > highestScore) {
 highestScore = s.score;
 }
 }
}

•  This code is inherently serial
–  Traversal logic is fixed (iterate serially from beginning to end)
–  Business logic is stateful (use of > and accumulator variable)

9

The biggest serial idiom of all: the for loop

double highestScore = 0.0;
for (Student s : students) {
 if (s.gradYear == 2010) {
 if (s.score > highestScore) {
 highestScore = s.score;
 }
 }
}

•  Existing collections impose external iteration
–  Client of collection determines mechanism of iteration
–  Implementation of accumulation is over-specified
–  Computation is achieved via side-effects

10

Let’s try a more parallel idiom: internal iteration

double highestScore =
 students.filter(new Predicate<Student>() {
 public boolean op(Student s) {
 return s.gradYear == 2010;
 }
 }).map(new Extractor<Student,Double>() {
 public Double extract(Student s) {
 return s.score;
 }
 }).max();

•  Not inherently serial!
–  Traversal logic is not fixed by the language
–  Business logic is stateless (no stateful accumulator)

11

Let’s try a more parallel idiom: internal iteration

double highestScore =
 students.filter(new Predicate<Student>() {
 public boolean op(Student s) {
 return s.gradYear == 2010;
 }
 }).map(new Extractor<Student,Double>() {
 public Double extract(Student s) {
 return s.score;
 }
 }).max();

•  Iteration and accumulation are embodied in the library
–  e.g. filtering may be done in parallel
–  Client is more flexible, more abstract, less error-prone

12

But … Yuck!

double highestScore =
 students.filter(new Predicate<Student>() {
 public boolean op(Student s) {
 return s.gradYear == 2010;
 }
 }).map(new Extractor<Student,Double>() {
 public Double extract(Student s) {
 return s.score;
 }
 }).max();

•  Can’t see the beef for the bun!

13

“The pain of anonymous inner
 classes makes us roll our eyes in
 the back of our heads every day.”

 A wise customer once said:

14

LAMBDA EXPRESSIONS

15

A better way to represent “code as data”

double highestScore =
students.filter(#{ Student s -> s.gradYear == 2010 })
 .map(#{ Student s -> s.score })
 .max();

•  Lambda expression is introduced with #

•  Zero or more formal parameters
–  Like a method

•  Body may be an expression or statements
–  Unlike a method
–  If body is an expression, no need for ‘return’ or ‘;’

16

A better way to represent “code as data”

double highestScore =
students.filter(#{ Student s -> s.gradYear == 2010 })
 .map(#{ Student s -> s.score })
 .max();

•  Code reads like the problem statement:
“Find the highest score of the students who graduated in 2010”

17

Lambda expressions support internal iteration

double highestScore =
students.filter(#{ Student s -> s.gradYear == 2010 })
 .map(#{ Student s -> s.score })
 .max();

•  Shorter than nested for loops, and potentially faster because
implementation determines how to iterate
–  Virtual method lookup chooses the best filter() method
–  filter() method body can exploit representation knowledge
–  Opportunities for lazy evaluation in filter() and map()
–  Opportunities for parallelism

18

The science of lambda expressions

•  The name comes from the lambda calculus created by Church
(1936) and explored by Steele and Sussman (1975-1980)

•  A lambda expression is a lexically scoped anonymous method
–  Lexical scoping: can read variables from the lexical environment,

including ‘this’, unlike with inner classes
–  No shadowing of lexical scope, unlike with inner classes
–  Not a member of any class, unlike with inner classes

19

“But why not...”

{ => 7 } #()(7)

{ -> 7 }
() -> 7;

lambda() (7);

#(->int) { return 7; }

new #<int() > (7) #(: int i) { i = 7; }

[] { return 7; }

20

“But why not...”

{ => 7 } #()(7)

{ -> 7 }
() -> 7;

lambda() (7);

#(->int) { return 7; }

new #<int() > (7) #(: int i) { i = 7; }

[] { return 7; } Syntax wars:

Just say no

21

TYPING

22

What is the type of a lambda expression?

#{ Student s -> s.gradYear == 2010 }

•  Morally, a function type from Student to boolean

•  But Java does not have function types, so:
–  How would we write a function type?
–  How would it interact with autoboxing?
–  How would it interact with generics?
–  How would it describe checked exceptions?

23

“Use what you know”

•  Java already has an idiom for describing “functional things”:
single-method interfaces (or abstract classes)

interface Runnable { void run(); }

interface Callable<T> { T call(); }

interface Comparator<T> { boolean compare(T x, T y); }

interface ActionListener { void actionPerformed(…); }

abstract class TimerTask { … abstract void run(); … }

•  Let’s reuse these, rather than introduce function types
Comparator<T> ~ a function type from (T,T) to boolean
Predicate<T> ~ a function type from T to boolean

24

Introducing: SAM types

•  A SAM type is an interface or abstract class with a
Single Abstract Method

interface Runnable { void run(); }

interface Callable<T> { T call(); }

interface Comparator<T> { boolean compare(T x, T y); }

interface ActionListener { void actionPerformed(…); }

abstract class TimerTask { … abstract void run(); … }

•  No special syntax to declare a SAM type
–  Recognition is automatic for suitable interfaces and abstract classes
–  Not just for java.* types!

25

26

The type of a lambda expression is a SAM type

•  “SAM conversion” infers a SAM type for a lambda expression

Predicate<Student> p = #{ Student s -> s.gradYear == 2010 };

•  Invoking the SAM type’s method invokes the lambda’s body

boolean ok = p.isTrue(aStudent);

•  Instant compatibility with existing libraries!

executor.submit(#{ -> println(“Boo”); });

btn.addActionListener(#{ ActionEvent e -> println(“Boo”) });

27

The science of SAM conversion

•  Lambda expression must have:
–  Same parameter types and arity as SAM type’s method
–  Return type compatible with SAM type’s method
–  Checked exceptions compatible with SAM type’s method

•  SAM type’s method name is not relevant:
 interface Predicate<T> { boolean op(T t); }
 Predicate<Student> p = #{ Student s -> s.gradYear == 2010 };

 interface StudentQualifier { Boolean check(Student s); }

 StudentQualifier c = #{ Student s -> s.gradYear == 2010 };

•  Lambda expressions may only appear in contexts where they can
undergo SAM conversion (assignment, method call/return, cast)

28

But wait, there’s more

•  Lambdas solve the “vertical problem” of inner classes

•  Parameter types can still be a “horizontal problem”

double highestScore =
students.filter(#{ Student s -> s.gradYear == 2010 })
 .map(#{ Student s -> s.score })
 .max();

29

But wait, there’s more

•  Lambdas solve the “vertical problem” of inner classes

•  Parameter types can still be a “horizontal problem”

double highestScore =
students.filter(#{ Student s -> s.gradYear == 2010 })
 .map(#{ Student s -> s.score })
 .max();

•  SAM conversion can usually infer them!

double highestScore =
students.filter(#{ s -> s.gradYear == 2010 })
 .map(#{ s -> s.score })
 .max();

•  Lambda expressions are always statically typed

30

SAM conversion includes target typing

•  Target typing identifies parameter types for the lambda
expression based on the candidate SAM type’s method

interface Collection<T> {
 Collection<T> filter(Predicate<T> t);
}
Collection<Student> students = …

… students.filter(#{ s -> s.gradYear == 2010 }) …

–  students.filter() takes a Predicate<Student>
–  Predicate<Student> is a SAM type whose method takes Student
–  Therefore, s must be a Student
–  Programmer can give parameter types in case of ambiguity

31

Recap: SAM types

•  Self-documenting

•  Build on existing concepts
–  Wildcards have made us wary of aggressive new type systems

•  Ensure lambda expressions work easily with existing libraries
–  Java SE will likely define a “starter kit” of SAM types such as

Predicate, Filter, Extractor, Mapper, Reducer…

•  Type inference gets your eyes to the “beef” quickly
–  Style guide: One-line lambdas may omit parameter types, but multi-

line lambdas should include parameter types

•  You could think of our lambda expressions as “SAM literals”

32

METHOD REFERENCES

33

Motivation

•  Consider sorting a list of Person objects by last name:

 class Person { String getLastName() {…} }

 List<Person> people = …
 Collections.sort(people, new Comparator<Person>() {
 public int compare(Person a, Person b) {
 return a.getLastName().compareTo(b.getLastName());
 }
 });

•  Yuck!
–  (Worse if sort key is a primitive)

34

A lambda expression helps, but only so much

Collections.sort(people,
 #{ a,b -> a.getLastName().compareTo(b.getLastName()) });

•  More concise, but not more abstract
–  Performs data access (getLastName) and computation (compareTo)
–  Assumes both Person objects are nearby (e.g. same JVM)

•  More abstract if someone else handles computation
–  If we can extract the data dependency – “Person’s last name” – from

the code, then sort() can split data access and computation
–  e.g. distribute Person objects across nodes and sort there

35

A lambda expression helps, but only so much

Collections.sort(people,
 #{ a,b -> a.getLastName().compareTo(b.getLastName()) });

•  More concise, but not more abstract
–  Performs data access (getLastName) and computation (compareTo)
–  Assumes both Person objects are nearby (e.g. same JVM)

•  More abstract if someone else handles computation
–  If we can extract the data dependency – “Person’s last name” – from

the code, then sort() can split data access and computation
–  e.g. distribute Person objects across nodes and sort there

SELEC
T * F

ROM P
ERSON

ORDER
 BY L

ASTNA
ME AS

C

36

How to express “Person’s last name” in Java?

•  Assume an interface to extract a value from an object:

 interface Extractor<T, U> { U get(T element); }

•  And a sort method keyed off an extractor:

 public <T, U extends Comparable<…>>
 void sortBy(Collection<T> coll, Extractor<T,U> ex) {…}
}

•  Then, pass a lambda expression that “wraps” a method call:

 Collections.sortBy(people, #{ p -> p.getLastName() });

–  SAM conversion types the lambda as Extractor<Person,String>
–  sortBy() can pre-query last names, cache them, build indices…

37

Is that the best we can do?

Collections.sortBy(people, #{ p -> p.getLastName() });

•  Writing little wrapper lambdas will be a pain

•  If only we could reuse an existing method...

38

Is that the best we can do?

Collections.sortBy(people, #{ p -> p.getLastName() });

•  Writing little wrapper lambdas will be a pain

•  If only we could reuse an existing method

Collections.sortBy(people, #Person.getLastName);

•  Method reference introduced with #

•  No need for () or parameter types in simple cases

39

Recap: Method references

•  When code outgrows a lambda expression, write a method and
take a method reference

•  Lambda expressions and method references have SAM types

•  Work easily with existing libraries

•  Can specify parameter types explicitly if needed

•  Three kinds of method references (unbound/bound/static)

•  No field references (use method references to getters/setters)

40

A word about implementation

•  Lambda expressions are not sugar for inner classes
–  Implemented with MethodHandle from JSR 292

•  Method references are not sugar for wrapper lambdas
–  Implemented with enhanced ldc instruction from JSR 292

•  See videos from 2010 JVM Language Summit for more
–  http://wiki.jvmlangsummit.com/
–  “Gathering the threads: JVM Futures”
–  “Efficient compilation of Lambdas using MethodHandle and JRockit”
–  “MethodHandles: an IBM implementation”

41

“But what about…”

Curried
functions Function

types

Partial
application

Properties

Control
abstraction Tennent’s

Correspondence
Principle

‘var’

Dynamic
typing

‘letrec’

Underscore
placeholders

Continuations

Field
references

42

Our view

•  Evolving a language with millions of developers is a
fundamentally different task from evolving a language with
thousands of developers
–  Adding features by the bucket is not good
–  Every feature adds conceptual weight

•  We believe Project Lambda’s changes are measured, and in the
spirit of Java
–  Focus on readability and developer productivity
–  No new types to learn (compare with wildcards)
–  Respectful of existing idioms (SAM)

43

44

LIBRARY EVOLUTION

45

As the language evolves, the libraries should
evolve with it

•  Java collections do not support internal iteration largely because
the language made it so clunky at the time

•  Now the language can easily treat “code as data”, it’s crucial to
support parallel/functional idioms in the standard libraries

•  Continues a long theme of language/library co-evolution
–  synchronized {} blocks / Thread.wait()/notify()
–  for-each loop / Iterable<T>
–  Generic type inference / <T>Collection.toArray(T[] x)

46

Without more library support for
parallel idioms,
people will instinctively reach for
serial idioms

47

Library support for internal iteration

•  Sometimes, we want to add more types
–  Recall Java SE will likely define a “starter kit” of SAM types

•  Sometimes, we want to augment existing interfaces

•  No good way to add methods to existing interfaces today
–  Binary compatible: old clients continue to execute
–  Source incompatible: old implementations fail to compile

•  Existing techniques for interface evolution are insufficient
–  Adding to j.u.Collections diminishes the value of interface contracts
–  Using abstract classes instead of interfaces
–  Interface inheritance and naming conventions (e.g. IDocument,

IDocumentExtension, IDocumentExtension2, IDocumentExtension3)

48

Object Pascal
Single inheritance

C++
Multiple everything

Java
The happy middle

Interface evolution

•  There is a spectrum of inheritance expressiveness

49

Object Pascal
Single inheritance

C++
Multiple everything

Traits Mixins

Java
The happy middle

Interface evolution

•  There is a spectrum of inheritance expressiveness

50

Object Pascal
Single inheritance

C++
Multiple everything

Traits Mixins

New target:
Extension methods

Java
The happy middle

Interface evolution

•  There is a spectrum of inheritance expressiveness

51

Extension methods: a measured step towards
more flexible inheritance

public interface Set<T> extends Collection<T> {
 public int size();
 …
 public T reduce(Reducer<T> r)
 default Collections.<T>setReducer;
}

•  Allows library maintainers to effectively add methods after the
fact by specifying a default implementation
–  “If you cannot afford an implementation of reduce(),

 one will be provided for you”

•  Less problematic than traits, mixins, full multiple inheritance

52

Extension methods in a nutshell

•  An extension method is just an ordinary interface method

•  For a client:
–  Nothing new to learn – calling the extension method works as usual,

and the default method is linked dynamically if needed

•  For an API implementer:
–  An implementation of an augmented interface may provide the

method, or not

•  For an API designer:
–  Default method can only use public API of augmented interface

•  For a JVM implementer:
–  Lots of work

53

WRAP-UP

54

Project Lambda: A Journey

Collections.sort(people, new Comparator<Person>() {
 public int compare(Person x, Person y) {
 return x.getLastName().compareTo(y.getLastName());
 }
});

55

Project Lambda: A Journey

Collections.sort(people, new Comparator<Person>() {
 public int compare(Person x, Person y) {
 return x.getLastName().compareTo(y.getLastName());
 }
});

Collections.sort(people, #{ Person x, Person y ->
 x.getLastName().compareTo(y.getLastName()) });

Lambda expressions

More essence,
less ceremony

56

Project Lambda: A Journey

Collections.sort(people, new Comparator<Person>() {
 public int compare(Person x, Person y) {
 return x.getLastName().compareTo(y.getLastName());
 }
});

Collections.sort(people, #{ Person x, Person y ->
 x.getLastName().compareTo(y.getLastName()) });

Lambda expressions SAM conversion

Forward compatibility
– old API works with

new expressions

More essence,
less ceremony

57

Project Lambda: A Journey

Collections.sort(people, new Comparator<Person>() {
 public int compare(Person x, Person y) {
 return x.getLastName().compareTo(y.getLastName());
 }
});

Collections.sort(people, #{ Person x, Person y ->
 x.getLastName().compareTo(y.getLastName()) });

Collections.sortBy(people, #{ Person p -> p.getLastName() });

Better libraries

More abstraction

Lambda expressions SAM conversion

58

Project Lambda: A Journey

Collections.sort(people, new Comparator<Person>() {
 public int compare(Person x, Person y) {
 return x.getLastName().compareTo(y.getLastName());
 }
});

Collections.sort(people, #{ Person x, Person y ->
 x.getLastName().compareTo(y.getLastName()) });

Collections.sortBy(people, #{ Person p -> p.getLastName() });

Collections.sortBy(people, #{ p -> p.getLastName() });

Type inference

Better libraries

Static typing can
be fun too!

Lambda expressions SAM conversion

59

Project Lambda: A Journey

Collections.sort(people, new Comparator<Person>() {
 public int compare(Person x, Person y) {
 return x.getLastName().compareTo(y.getLastName());
 }
});

Collections.sort(people, #{ Person x, Person y ->
 x.getLastName().compareTo(y.getLastName()) });

Collections.sortBy(people, #{ Person p -> p.getLastName() });

Collections.sortBy(people, #{ p -> p.getLastName() });

Collections.sortBy(people, #Person.getLastName);

Type inference

Method references

Better libraries

Don’t Repeat Yourself

Lambda expressions SAM conversion

60

Project Lambda: A Journey

Collections.sort(people, new Comparator<Person>() {
 public int compare(Person x, Person y) {
 return x.getLastName().compareTo(y.getLastName());
 }
});

Collections.sort(people, #{ Person x, Person y ->
 x.getLastName().compareTo(y.getLastName()) });

Collections.sortBy(people, #{ Person p -> p.getLastName() });

Collections.sortBy(people, #{ p -> p.getLastName() });

Collections.sortBy(people, #Person.getLastName);

people.sortBy(#Person.getLastName);

Type inference

Method references

Extension methods

Migration compatibility –
Old class implements

new interface

Better libraries

Lambda expressions SAM conversion

61

Project Lambda: A Journey

Collections.sort(people, new Comparator<Person>() {
 public int compare(Person x, Person y) {
 return x.getLastName().compareTo(y.getLastName());
 }
});

people.sortBy(#Person.getLastName);

Lambda expressions

Better libraries

Type inference

Method references
Extension methods

62

Project Lambda: A Journey

Collections.sort(people, new Comparator<Person>() {
 public int compare(Person x, Person y) {
 return x.getLastName().compareTo(y.getLastName());
 }
});

people.sortBy(#Person.getLastName);

Lambda expressions

Better libraries

Type inference

Method references
Extension methods

More concise

More abstract

Less ceremony

More reuse
More object-oriented

63

Project Lambda: To Multicore and Beyond

•  Project Lambda is not just “closures”

•  A suite of features to support parallel/functional idioms

•  With an eye on compatibility, as always

•  Collections story is a work in progress

•  JVM evolution in JSR 292 really helps the Java language

•  Steady pipeline of measured innovation

64

