
1

<Insert Picture Here>

C++, Java and .NET:
Lessons learned from the Internet Age, and What it Means for the Cloud
and Emerging Languages

Cameron Purdy
Vice President, Development

3

<Insert Picture Here> A retrospective of the trade-offs
compared to C++ illustrated by Java, C#
and other VM-based programming
languages with Garbage-Collection, why
scripting languages simultaneously
thrived, and what this teaches us about
the applicability of technology to
emerging challenges and environments
such as cloud computing.

Overview

4

About the Speaker: Cameron Purdy

•  Vice President of Development
 for Oracle Fusion Middleware,
 responsible for the Coherence
 Data Grid product, which has
 Java, C# and C++ versions

•  Founder and CEO of Tangosol,
 acquired by Oracle in 2007

•  Programming C++ since 1994,
 Java since 1996, Java EE
 since 1999, and C# since 2001

5

<Insert Picture Here>

A word from our Sponsor

The Oracle Coherence In-Memory Data Grid
is a data management system for application
objects that are shared across multiple
servers, require low response time, very
high throughput, predictable scalability,
continuous availability and information
reliability.

6

Oracle Coherence Data Grid

•  Provides a reliable data tier
with a single, consistent view of
data

•  Enables dynamic data capacity
including fault tolerance and
load balancing

•  Ensures that data capacity
scales with processing capacity

Mainframes Databases Web Services

Enterprise
Applications

Real Time
Clients

Web
Services

Oracle Coherence
Data Grid

Data Services

Distributed in Memory Data Management

7

Oracle Coherence: How it Works
It’s like RAID storage for Java Objects

 Data is automatically partitioned and
 load-balanced across the Server

Cluster
 Data is synchronously replicated for

 continuous availability

 Servers monitor the health of each
other

 When in doubt, servers work together
to diagnose status

 Healthy servers assume responsibility
for failed server (in parallel)

 Continuous Operation: No interruption
to service or data loss due to a server

failure

8

Data Grid: Capability Summary
A Data Grid combines data management with data

processing in a scale-out environment
•  Some or all of the servers in the

grid are responsible for reliably
managing live information

•  Any or all of the servers in the grid
are able to simultaneously access
and manipulate a shared,
consistent view of that information

•  Processing power far exceeds
aggregate network bandwidth, so
data access and manipulation must
be parallelized and localized within
the grid

•  Data locality is both dynamic and
transparent

App
Servers

Web Servers

Clients and
Users

Data Sources

Data Supply

Data Demand

Java Objects

9

Disclaimer

The views expressed in this presentation
are my own and do not necessarily reflect

the views of my employer.

10

Java in the eyes of a Java Programmer

11

Java in the eyes of a C++ Programmer

12

Java in the eyes of a Ruby Programmer

13

Java in the eyes of a Scala Programmer

Who needs the language when you have the
JVM?

14

15

Top 10 Reasons Why Java has
been able to supplant C++

Do not seek to follow in the
footsteps of the men of old;

seek what they sought.
 - Matsuo Basho

16

Warning to Language Fanbois

Yes, I know that there are third
party GC implementations for C+
+ and that you can get POSIX
support on Windows from
Cygwin, and ….
Don’t go all Comicbook Guy on
me. I’m describing reality as it is,
not as how it could be.

17

10. Automated Garbage Collection

•  A significant portion of
C++ code is dedicated
to memory
management

•  Cross-component
memory management
does not exist in C++
–  Libraries and

components are harder
to build and have less
natural APIs

•  Faster time to market,
lower bug count

18

9. The Build Process

•  C++ builds are slow and
complicated

•  Personal example: 20 hour
full build in C++ compared to
7 minutes in Java

•  Multiply that times two: For
debugging C++, you need a
second build

•  Tools such as Ant & Maven
are available in Java
–  make? nmake? Atrocious!

19

8. Simplicity of Source Code and Artifacts

•  C++ splits source into
header and implementation
files
–  Header trawling
–  Require big monitor to see .hpp

and .cpp at the same time
–  Code in multiple places: Some

inlined in the header, some in
the .cpp

•  Artifacts are compiler-
specific, but there are many
of them
–  Java: Just one .java, one .class

20

7. Binary Standard

•  In addition to being loadable
as a class by a JVM, a Java
Classfile can be used to
compile against
–  C++ has no binary standard
–  Precompiled headers?

Compiler and platform specific
–  C++ requires a large amount of

source to be shipped in order to
compile against it; brittle!

•  Java defers platform-specific
stuff to the runtime

21

6. Dynamic Linking

•  No standard way to
dynamically link to C++
classes
–  Compiler and platform specific
–  Messy at best

•  Java allows arbitrary
collections of classes to be
packaged together and
dynamically loaded and
linked as needed
–  No DLL hell!

22

5. Portability

•  Java is portable with very little effort;
C++ is portable in theory, but in
practice you have to build another
language (#ifdef’d types, etc.) on top
of it

•  C++ has significant differences from
vendor to vendor, e.g. standards
support
–  Some unnamed major vendors have

horrid support for the C++ standard,
particularly templates

•  “In theory, there’s no difference
between theory and practice”

23

4. Standard Type System

•  Java has:
–  Specified, portable primitive types
–  Built in, specified, portable runtime

library
–  Rich support for I/O, networking, XML/

HTML, database connectivity

•  C++ has:
–  16-bit? 32-bit? 64-bit? 80-bit!?!?
–  Multi-threading? You must be joking
–  STL? Maybe some day
–  Basically nothing is standard!

24

3. Reflection

•  Full runtime capability
to look at the runtime
–  C++ has optional RTTI

but no reflection

•  Enables extremely
powerful generic
frameworks
–  Ability to learn about,

access and manipulate
any object

25

2. Performance

•  GC can make memory management
much more efficient
–  Slab allocators
–  Escape analysis

•  Multi-threaded? No support in C++
•  Thread safe smart pointers 3x

slower than Java references
•  Hotspot can do massive inlining
–  Very important for dealing with layers of

virtual invocation

26

1. Safety

•  Elimination of pointers
–  Arbitrary memory access
–  Ability to easily crash the

process (core dump)

•  No buffer overruns
–  Code and data cannot be

accidentally mixed

•  Bounds checked
–  All raw access via arrays and

NIO buffers
–  Impossible to read/write outside

of the bounds of either

27

Honorable Mention: C++ Templates

•  Fugly
–  Atrocious syntax (IMHO)
–  Metaprogramming is near

unreadable
–  Advanced features are not

explainable to mortals
–  Only Bjarne understands

•  Bloat
–  The compiler does the cut

& paste for you
–  Personal example: 80MB

binary

28

Top 10 Reasons Why Java has
not been able to supplant C++

Old ideas give way slowly; for
they are more than abstract
logical forms and categories,
they are habits,
predispositions, deeply
ingrained attitudes of
diversion and preference.

 - John Dewey

29

10. Startup Time

•  The graph of initially loaded
classes is pretty large
–  Loading
–  Validation
–  JITting
–  Initializer code

•  The code is either getting JITted
to native code each time the JVM
starts, or it’s initially being
interpreted (Hotspot)

•  Conclusion: Not good for “instant”
and short-running processes

30

9. Memory Footprint

•  Java uses significantly more
memory than C++,
particularly for “small”
applications
–  Easily two orders of magnitude

more at the extreme end of the
scale

•  Memory requirements limit
Java adoption on some
devices

31

8. Full GC Pauses

•  Sooner or later, there is a part
of GC that can’t be run in the
background and can’t be
avoided
–  Results in a temporary halt
–  Makes real time impossible

•  Havoc for distributed systems
–  Is the process dead? Locked up?

Or in GC?

•  Possible partial amelioration by
increasing the memory footprint

32

7. No Deterministic Destruction

•  No support for RAII
•  Cannot count on finalizers
–  What if you own a socket? A

thread? A mutex!?!?

•  Not even a “using” construct
in Java (there is one in C#)

33

6. Barriers to Native Integration

•  Operating Systems are built in C/C
++
–  APIs are typically C
–  Native GUIs and other OS-level

functionality often require C (e.g. cdecl
or pascal) callbacks

•  JNI allows Java to call … native
code that was written explicitly to
be called by JNI

34

Top 10 5 Reasons Why Java has
not been able to supplant C++

Old ideas give way slowly; for
they are more than abstract
logical forms and categories,
they are habits,
predispositions, deeply
ingrained attitudes of
diversion and preference.

 - John Dewey

So it wasn’t a Top 10 list …

35

Understanding the Shift to Java and C#

•  Shift Happens
–  Internet & the World Wide Web
–  HTML Browser: No client-side

software per application, no
installation, no configuration
•  Eliminated startup time, memory

footprint and native (e.g. GUI)
integration benefits of C++

–  Required faster iterative
development, better class libraries,
modularity, long running capability
(no memory leaks), multi-threading
support and safety on the server

36

Scripting Languages

•  Simplicity & Approachability
–  Hooks up to databases
–  Manages state on behalf of the user
–  Produces HTML

•  Rapid Application Development
–  No OO Architectural Requirements
–  No compile step; save and refresh

•  High Density
–  Designed for shared hosting
–  Much lower initial memory footprint
–  Stateless processes are easy to scale

in the small, and easy to cycle

37

Cloud Computing

New roads; new ruts.
 - G. K. Chesterton

38

What are we missing?

•  Virtual Machine
–  Modularity, Lifecycle & Isolation
–  Lower memory footprint
–  Predictable GC pauses

•  Platform
–  Distributed system as a system
–  Provisioning and Metering
–  Cloud Operating System APIs
–  Persistence (including key/value)
–  Map/Reduce-style processing

•  Application Definition
–  Packaging, Resource Declaration
–  Security

39

Rethinking the Container for the Cloud

•  What’s changed in the world
since Java was introduced?
–  Hardware Virtualization
–  Stateful Grid Infrastructure
–  Capacity On Demand ISPs (EC2)

•  What’s coming in Java?
–  Modularization
–  NIO pluggable file systems
–  JVM Bare Metal & Virtual Editions

•  Conclusion: Java either steps
up, or something else will

<Insert Picture Here>

C++, Java and .NET:
Lessons learned from the Internet Age, and What it Means for the Cloud
and Emerging Languages

Cameron Purdy
Vice President, Development

41

