
Thinking the
Clojure Way

Christophe Grand

GOTO Cph, May 13th 2011

Rejoice, Clojure is simple
Coding along/against
Singing with

à la carte

Rejoice, Clojure is simple
Small regular syntax

Coding along/against
Singing with

à la carte

Rejoice, Clojure is simple
Small regular syntax

Simple does not mean familiar

Coding along/against
Singing with

à la carte

Rejoice, Clojure is simple
Small regular syntax

Simple does not mean familiar

Simple means not compound

Coding along/against
Singing with

à la carte

Rejoice, Clojure is simple
Small regular syntax

Simple does not mean familiar

Simple means not compound

Clojure is made of simple things

Coding along/against
Singing with

à la carte

Rejoice, Clojure is simple
Small regular syntax

Simple does not mean familiar

Simple means not compound

Clojure is made of simple things

Small set of independent concepts

Coding along/against
Singing with

à la carte

Rejoice, Clojure is simple
Small regular syntax

Simple does not mean familiar

Simple means not compound

Clojure is made of simple things

Small set of independent concepts

One concept at a time

Coding along/against
Singing with

à la carte

Rejoice, Clojure is simple
Small regular syntax

Simple does not mean familiar

Simple means not compound

Clojure is made of simple things

Small set of independent concepts

One concept at a time

Coding along/against
Singing with

à la carte

Syntax

Core Functional Programming

Recursion and loops

Lazy seqs (creating your owns)

Polymorphism

Types

Macros

Interop

State management

One bite at a time
faire 4 groupes :
Syntax+FP
Rec+lazy seqs
polymorphism+types
interop+mutation

les deux derniers blocs devraient être
animés pour être mis au même niveau

Syntax

Literals
Numbers 42 3.14 3/4 5.01M 43N

Strings "Hello GOTO Cph"

Characters \c \newline

Keywords :a-key

Symbols foo clojure.core/map

Vectors [1 "two" :three]

Maps {:key "val", :key2 42}

Sets #{1 "two" :three}

Regex #"a.*b"

null nil

booleans* true false
*anything but false and nil is true

What about lists?

What about lists?
Quoted lists are too literal: '(1 (+ 1 1))

What about lists?
Quoted lists are too literal: '(1 (+ 1 1))

Displaced as literals by vectors

What about lists?
Quoted lists are too literal: '(1 (+ 1 1))

Displaced as literals by vectors

Abstracted away by sequences

What about lists?
Quoted lists are too literal: '(1 (+ 1 1))

Displaced as literals by vectors

Abstracted away by sequences

Survive mostly for code representation

 (
 defn abs [n]
 if neg? n)
 - n)
 n))

Lists are for code
(
 (
 (

 (
 defn abs [n]
 if neg? n)
 - n)
 n))

Lists are for code
(
 (
 (

Pro tip: Lisp code is a stereogram

 (
 defn abs [n]
 if neg? n)
 - n)
 n))

Lists are for code
(
 (
 (

Pro tip: Lisp code is a stereogram
Cross your eyes to see parens in the right place

 (
 defn abs [n]
 if neg? n)
 - n)
 n))

Lists are for code
(

 (
 (

Pro tip: Lisp code is a stereogram
Cross your eyes to see parens in the right place

(defn abs [n]
 (if (neg? n)
 (- n)
 n))

Lists are for code

(defn abs [n]
 (if (neg? n)
 (- n)
 n))

Lists are for code

function

(defn abs [n]
 (if (neg? n)
 (- n)
 n))

Lists are for code

macro

function

(defn abs [n]
 (if (neg? n)
 (- n)
 n))

Lists are for code

special form

macro

function

That’s all about syntax!

Functional
Programming

Clojure’s FP

Clojure’s FP
Impure

Clojure’s FP
Impure

Persistent collections

Clojure’s FP
Impure

Persistent collections

Strictly evaluated

Clojure’s FP
Impure

Persistent collections

Strictly evaluated

But lazy sequences

Clojure’s FP
Impure

Persistent collections

Strictly evaluated

But lazy sequences

Not strictly lazy though!

Clojure’s FP
Impure

Persistent collections

Strictly evaluated

But lazy sequences

Not strictly lazy though!

Persistent collections

Persistent collections
Vectors, maps and sets

Persistent collections
Vectors, maps and sets

Common usecases:

Persistent collections
Vectors, maps and sets

Common usecases:

Vectors as tuples

Persistent collections
Vectors, maps and sets

Common usecases:

Vectors as tuples

Vectors as stacks

Persistent collections
Vectors, maps and sets

Common usecases:

Vectors as tuples

Vectors as stacks

Maps as data

Persistent collections
Vectors, maps and sets

Common usecases:

Vectors as tuples

Vectors as stacks

Maps as data

Map as index, summary

Persistent collections
Vectors, maps and sets

Common usecases:

Vectors as tuples

Vectors as stacks

Maps as data

Map as index, summary

Sets as containers, relations

Sequences

Sequences
First, what are sequences?

Sequences
First, what are sequences?

Abstraction over linked lists

Sequences
First, what are sequences?

Abstraction over linked lists

List-like views over data

Sequences
First, what are sequences?

Abstraction over linked lists

List-like views over data

Support first and rest

Sequences
First, what are sequences?

Abstraction over linked lists

List-like views over data

Support first and rest

Replace iterators

Sequences
First, what are sequences?

Abstraction over linked lists

List-like views over data

Support first and rest

Replace iterators

Replace indices

Lazy sequences

Lazy sequences
Sequences evaluated (realized) on demand

Lazy sequences
Sequences evaluated (realized) on demand

Allow to process big data

Lazy sequences
Sequences evaluated (realized) on demand

Allow to process big data

or big intermediate values

Lazy sequences
Sequences evaluated (realized) on demand

Allow to process big data

or big intermediate values

 (->> (slurp "access.log") split-lines (map count)
 (filter odd?))

Lazy sequences

Doesn’t matter w/ strict
evaluation

Lazy sequences
Realization can go ahead of consumption

Doesn’t matter w/ strict
evaluation

Lazy sequences
Realization can go ahead of consumption

Not suitable for control flow Doesn’t matter w/ strict
evaluation

Lazy sequences
Realization can go ahead of consumption

Not suitable for control flow

Better locality, less churn

Doesn’t matter w/ strict
evaluation

That’s all about FP!

Clojure spirit

Clojure spirit

Clojure spirit
Pragmatism

Clojure spirit
Pragmatism

Correctness

Clojure spirit
Pragmatism

Correctness

Uniform interfaces

Clojure spirit
Pragmatism

Correctness

Uniform interfaces

Data over functions

Clojure spirit
Pragmatism

Correctness

Uniform interfaces

Data over functions

Sequences as computation media

Clojure spirit
Pragmatism

Correctness

Uniform interfaces

Data over functions

Sequences as computation media

Reftypes as mutation patterns

Pragmatism
Hosted on the JVM

Embrace the host limitations

to be a better guest

Excellent Java interop

Performance over purity

LISP

Correctness
No silent error

Correct result or failure

Non-negotiable

See 1.2 -> 1.3 numerics changes

Unless the user opts in

Uniform interfaces

Uniform interfaces
Widespread small interfaces

Uniform interfaces
Widespread small interfaces

Tons of helpers fns built upon

Uniform interfaces
Widespread small interfaces

Tons of helpers fns built upon

It is better to have 100 functions operate on
one data structure than 10 functions on 10
data structures.

– Alan Perlis

Uniform interfaces
Widespread small interfaces

Tons of helpers fns built upon

It is better to have 100 functions operate on
one data structure than 10 functions on 10
data structures.

– Alan Perlis
It is better to have 100 functions operate on
one abstraction than 10 functions on 10
data structures.

– Rich Hickey

Uniform interfaces

=> (-> (javax.swing.JFrame.) bean keys sort)
(:JMenuBar :accessibleContext :active :alignmentX
:alignmentY :alwaysOnTop :alwaysOnTopSupported
:background :bufferStrategy :componentCount :components
:containerListeners :contentPane :cursorType
:defaultCloseOperation ...)

=> (-> {:product-id "ACME123", :description "Powder
water"} keys sort)
(:description :product-id)

Data over functions
Large reuse of core collection fns

Less specific code

Data go out of the process

Don’t be too clever

A schema is a good API

Data over functions

Data over functions
How to enforce invariants

Data over functions
How to enforce invariants

Write a validator function

Data over functions
How to enforce invariants

Write a validator function

Use it in fns pre- and post-conditions

Data over functions
How to enforce invariants

Write a validator function

Use it in fns pre- and post-conditions

Use it in reftypes validators

Sequences as pipes

Sequences as pipes
Sequences as ephemeral media of
computation

Sequences as pipes
Sequences as ephemeral media of
computation

Each stage of a pipeline yields its own seq

Sequences as pipes
Sequences as ephemeral media of
computation

Each stage of a pipeline yields its own seq

The ends of the pipeline are not seqs:

Sequences as pipes
Sequences as ephemeral media of
computation

Each stage of a pipeline yields its own seq

The ends of the pipeline are not seqs:

db, network, persistent collection etc.

Sequences as pipes
Sequences as ephemeral media of
computation

Each stage of a pipeline yields its own seq

The ends of the pipeline are not seqs:

db, network, persistent collection etc.

Mutation patterns

Mutation patterns
Reftypes embody mutation patterns

Mutation patterns
Reftypes embody mutation patterns

Application state management:

Mutation patterns
Reftypes embody mutation patterns

Application state management:

Refs, atoms and agents

Mutation patterns
Reftypes embody mutation patterns

Application state management:

Refs, atoms and agents

Program state management:

Mutation patterns
Reftypes embody mutation patterns

Application state management:

Refs, atoms and agents

Program state management:

Vars

Mutation patterns
Reftypes embody mutation patterns

Application state management:

Refs, atoms and agents

Program state management:

Vars

Execution or dataflow management:

Mutation patterns
Reftypes embody mutation patterns

Application state management:

Refs, atoms and agents

Program state management:

Vars

Execution or dataflow management:

Promises, delays and futures

How to think
functionally?

Break your habits

Tie your imperative hand
behind your back!

Tie your OO hand too!

Syntax

Core Functional Programming

Recursion and loops

Lazy seqs (creating your owns)

Polymorphism

Types

Macros

Interop

Mutation

Features

Syntax

Core Functional Programming

Recursion and loops

Lazy seqs (creating your owns)

Polymorphism

Types

Macros

Interop

Mutation

Features

Syntax

Core Functional Programming

Recursion and loops

Lazy seqs (creating your owns)

Polymorphism

Types

Macros

Interop

Mutation

Features

Syntax

Core Functional Programming

Recursion and loops

Lazy seqs (creating your owns)

Polymorphism

Types

Macros

Interop

Mutation

Features

Syntax

Core Functional Programming

Recursion and loops

Lazy seqs (creating your owns)

Polymorphism

Types

Macros

Interop

Mutation

Features

Syntax

Core Functional Programming

Recursion and loops

Lazy seqs (creating your owns)

Polymorphism

Types

Macros

Interop

Mutation

Features

Syntax

Core Functional Programming

Recursion and loops

Lazy seqs (creating your owns)

Polymorphism

Types

Macros

Interop

Mutation

Features

Syntax

Core Functional Programming

Recursion and loops

Lazy seqs (creating your owns)

Polymorphism

Types

Macros

Interop

Mutation

Features

Pure Functional Programming

without recursion nor loops

without lazy-seq

without indices

Allowed subset

Do it until it hurts!
(and works)

Do it especially for
ill-suited problems!

Example:
Conway’s game of life

Rules
At each step in time, the following transitions occur:

• Any live cell with fewer than two live neighbours
dies, as if caused by under-population.

• Any live cell with two or three live neighbours
lives on to the next generation.

• Any live cell with more than three live neighbours
dies, as if by overcrowding.

• Any dead cell with exactly three live neighbours
becomes a live cell, as if by reproduction.

(wikipedia)

(defn step
 "Takes a vector of vectors of 0 and 1, and
 returns the next iteration of the automaton."
 [board]
 (let [w (count board)
 h (count (first board))]
 (loop [i 0 j 0 new-board board]
 (cond
 (>= i w) new-board
 (>= j h) (recur (inc i) 0 new-board)
 :else
 (let [n (neighbours-count board i j)
 nb (cond
 (= 3 n) (assoc-in new-board [i j] 1)
 (not= 2 n) (assoc-in new-board [i j] 0)
 :else new-board)]
 (recur i (inc j) new-board))))))

Conway’s game of life
Typical implementation is full of indices and loops

(defn step
 "Takes a vector of vectors of 0 and 1, and
 returns the next iteration of the automaton."
 [board]
 (let [w (count board)
 h (count (first board))]
 (loop [i 0 j 0 new-board board]
 (cond
 (>= i w) new-board
 (>= j h) (recur (inc i) 0 new-board)
 :else
 (let [n (neighbours-count board i j)
 nb (cond
 (= 3 n) (assoc-in new-board [i j] 1)
 (not= 2 n) (assoc-in new-board [i j] 0)
 :else new-board)]
 (recur i (inc j) new-board))))))

Conway’s game of life
Typical implementation is full of indices and loops

(defn neighbours-count [board i j]
 (let [i+1 (inc i) j+1 (inc j)]
 (loop [cnt 0 x (dec i) y (dec j)]
 (cond
 (> x i+1) cnt
 (> y j+1) (recur cnt (inc x) (dec j))
 (= [x y] [i j]) (recur cnt x (inc y))
 :else (recur (+ cnt (get-in board [x y] 0))
 x (inc y))))))

Conway’s game of life
And there’s more!

(defn neighbours-count [board i j]
 (let [i+1 (inc i) j+1 (inc j)]
 (loop [cnt 0 x (dec i) y (dec j)]
 (cond
 (> x i+1) cnt
 (> y j+1) (recur cnt (inc x) (dec j))
 (= [x y] [i j]) (recur cnt x (inc y))
 :else (recur (+ cnt (get-in board [x y] 0))
 x (inc y))))))

Conway’s game of life
And there’s more!

Look, no indices
At each step in time, the following transitions occur:

• Any live cell with fewer than two live neighbours
dies, as if caused by under-population.

• Any live cell with two or three live neighbours
lives on to the next generation.

• Any live cell with more than three live neighbours
dies, as if by overcrowding.

• Any dead cell with exactly three live neighbours
becomes a live cell, as if by reproduction.

(wikipedia)

Take a step back!

Look, no indices
At each step in time, the following transitions occur:

• Any live cell with fewer than two live neighbours
dies, as if caused by under-population.

• Any live cell with two or three live neighbours
lives on to the next generation.

• Any live cell with more than three live
neighbours dies, as if by overcrowding.

• Any dead cell with exactly three live neighbours
becomes a live cell, as if by reproduction.

(wikipedia)

Neighbours!

Neighbours!
Try to express the rules in code using the
neighbours concept

Neighbours!
Try to express the rules in code using the
neighbours concept

Don’t worry about the implementation of
neighbours

Neighbours!

Neighbours!
For each living cell or neighbour of a living
cell, compute the number of neighbours.

Neighbours!
For each living cell or neighbour of a living
cell, compute the number of neighbours.

 Then apply generation rules.

Neighbours!

Neighbours!
Compute all neighbours of the living cells.

Neighbours!
Compute all neighbours of the living cells.

Occurences count is neighbour count!

Neighbours!
Compute all neighbours of the living cells.

Occurences count is neighbour count!

 Then apply generation rules.

(defn step
 "Takes a set of living cells and returns the next
generation (as a set too)."
 [living-cells]
 (letfn [(alive [[cell cnt]]
 (when (or (= cnt 3)
 (and (= cnt 2) (living-cells cell)))
 cell))]
 (->> living-cells (mapcat neighbours) frequencies
 (keep alive) set)))

Neighbours!

(defn step
 "Takes a set of living cells and returns the next
generation (as a set too)."
 [living-cells]
 (letfn [(alive [[cell cnt]]
 (when (or (= cnt 3)
 (and (= cnt 2) (living-cells cell)))
 cell))]
 (->> living-cells (mapcat neighbours) frequencies
 (keep alive) set)))

Neighbours!

(defn step
 "Takes a set of living cells and returns the next
generation (as a set too)."
 [living-cells]
 (letfn [(alive [[cell cnt]]
 (when (or (= cnt 3)
 (and (= cnt 2) (living-cells cell)))
 cell))]
 (->> living-cells (mapcat neighbours) frequencies
 (keep alive) set)))

Neighbours!
(defn neighbours [[x y]]
 (for [dx [-1 0 1]
 dy (if (zero? dx) [-1 1] [-1 0 1])]
 [(+ x dx) (+ y dy)]))

Drafting code

Drafting code
Don’t go to the details

Drafting code
Don’t go to the details

Draft high-level code you’d like to be
able to write to solve the problem

Drafting code
Don’t go to the details

Draft high-level code you’d like to be
able to write to solve the problem

Try to implement it

Drafting code
Don’t go to the details

Draft high-level code you’d like to be
able to write to solve the problem

Try to implement it

Negociate between practicality of
implementation and draft code

But it really hurts...

But it really hurts...
Ask for help

But it really hurts...
Ask for help

#clojure on IRC

But it really hurts...
Ask for help

#clojure on IRC

Stackoverflow

But it really hurts...
Ask for help

#clojure on IRC

Stackoverflow

clojure google group

But it really hurts...
Ask for help

#clojure on IRC

Stackoverflow

clojure google group

reach your local user group

But it really hurts...
Ask for help

#clojure on IRC

Stackoverflow

clojure google group

reach your local user group

create your local user group

But it really hurts...
Ask for help

#clojure on IRC

Stackoverflow

clojure google group

reach your local user group

create your local user group

mail me christophe@cgrand.net

mailto:christophe@cgrand.net
mailto:christophe@cgrand.net

