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Simple does not mean familiar

Simple means not compound
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Syntax

Core Functional Programming

Recursion and loops

Lazy seqs (creating your owns)

Polymorphism 

Types

Macros

Interop

State management

One bite at a time
faire 4 groupes :
Syntax+FP
Rec+lazy seqs
polymorphism+types
interop+mutation

les deux derniers blocs devraient être 
animés pour être mis au même niveau



Syntax



Literals
Numbers 42 3.14 3/4 5.01M 43N

Strings "Hello GOTO Cph"

Characters \c \newline

Keywords :a-key

Symbols foo clojure.core/map

Vectors [1 "two" :three]

Maps {:key "val", :key2 42}

Sets #{1 "two" :three}

Regex #"a.*b"

null nil

booleans* true false
*anything but false and nil is true
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What about lists?
Quoted lists are too literal: '(1 (+ 1 1))

Displaced as literals by vectors

Abstracted away by sequences

Survive mostly for code representation
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(defn abs [n]
  (if (neg? n)
    (- n)
    n))

Lists are for code

special form

macro

function



That’s all about syntax!
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Persistent collections
Vectors, maps and sets

Common usecases:

Vectors as tuples

Vectors as stacks

Maps as data

Map as index, summary 

Sets as containers, relations
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Sequences
First, what are sequences?

Abstraction over linked lists

List-like views over data

Support first and rest

Replace iterators

Replace indices
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Lazy sequences
Sequences evaluated (realized) on demand

Allow to process big data

or big intermediate values

 (->> (slurp "access.log") split-lines (map count)
   (filter odd?))
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Lazy sequences
Realization can go ahead of consumption

Not suitable for control flow

Better locality, less churn

Doesn’t matter w/ strict 
evaluation
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Correctness 

Uniform interfaces
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Reftypes as mutation patterns



Pragmatism
Hosted on the JVM

Embrace the host limitations

to be a better guest

Excellent Java interop

Performance over purity

LISP



Correctness
No silent error

Correct result or failure

Non-negotiable

See 1.2 -> 1.3 numerics changes

Unless the user opts in
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Uniform interfaces
Widespread small interfaces

Tons of helpers fns built upon

It is better to have 100 functions operate on 
one data structure than 10 functions on 10 
data structures.

– Alan Perlis
It is better to have 100 functions operate on 
one abstraction than 10 functions on 10 
data structures.

– Rich Hickey



Uniform interfaces

=> (-> (javax.swing.JFrame.) bean keys sort)
(:JMenuBar :accessibleContext :active :alignmentX 
:alignmentY :alwaysOnTop :alwaysOnTopSupported 
:background :bufferStrategy :componentCount :components 
:containerListeners :contentPane :cursorType 
:defaultCloseOperation ...)

=> (-> {:product-id "ACME123", :description "Powder 
water"} keys sort)
(:description :product-id)



Data over functions
Large reuse of core collection fns

Less specific code

Data go out of the process

Don’t be too clever

A schema is a good API
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Data over functions
How to enforce invariants

Write a validator function

Use it in fns pre- and post-conditions

Use it in reftypes validators
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Mutation patterns
Reftypes embody mutation patterns

Application state management:

Refs, atoms and agents

Program state management: 

Vars

Execution or dataflow management: 

Promises, delays and futures



How to think 
functionally?



Break your habits



Tie your imperative hand 
behind your back!



Tie your OO hand too!
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Pure Functional Programming

without recursion nor loops

without lazy-seq

without indices

Allowed subset



Do it until it hurts!
(and works)



Do it especially for 
ill-suited problems!



Example:
Conway’s game of life



Rules
At each step in time, the following transitions occur:

• Any live cell with fewer than two live neighbours 
dies, as if caused by under-population.

• Any live cell with two or three live neighbours 
lives on to the next generation.

• Any live cell with more than three live neighbours 
dies, as if by overcrowding.

• Any dead cell with exactly three live neighbours 
becomes a live cell, as if by reproduction.

(wikipedia)



(defn step
 "Takes a vector of vectors of 0 and 1, and 
  returns the next iteration of the automaton."
 [board]
  (let [w (count board)
        h (count (first board))]
    (loop [i 0 j 0 new-board board]
      (cond
        (>= i w) new-board
        (>= j h) (recur (inc i) 0 new-board)
        :else 
          (let [n (neighbours-count board i j)
                nb (cond 
                     (= 3 n) (assoc-in new-board [i j] 1)
                     (not= 2 n) (assoc-in new-board [i j] 0)
                     :else new-board)]
            (recur i (inc j) new-board))))))

Conway’s game of life
Typical implementation is full of indices and loops
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(defn neighbours-count [board i j]
  (let [i+1 (inc i) j+1 (inc j)]
    (loop [cnt 0 x (dec i) y (dec j)]
      (cond
        (> x i+1) cnt
        (> y j+1) (recur cnt (inc x) (dec j))
        (= [x y] [i j]) (recur cnt x (inc y))
        :else (recur (+ cnt (get-in board [x y] 0))
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Conway’s game of life
And there’s more!
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Look, no indices
At each step in time, the following transitions occur:

• Any live cell with fewer than two live neighbours 
dies, as if caused by under-population.

• Any live cell with two or three live neighbours 
lives on to the next generation.

• Any live cell with more than three live neighbours 
dies, as if by overcrowding.
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(wikipedia)



Take a step back!



Look, no indices
At each step in time, the following transitions occur:

• Any live cell with fewer than two live neighbours 
dies, as if caused by under-population.

• Any live cell with two or three live neighbours 
lives on to the next generation.

• Any live cell with more than three live 
neighbours dies, as if by overcrowding.

• Any dead cell with exactly three live neighbours 
becomes a live cell, as if by reproduction.

(wikipedia)
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Neighbours!
Try to express the rules in code using the 
neighbours concept

Don’t worry about the implementation of 
neighbours 
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Compute all neighbours of the living cells.
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 Then apply generation rules.



(defn step 
  "Takes a set of living cells and returns the next 
generation (as a set too)."
  [living-cells]
  (letfn [(alive [[cell cnt]]
            (when (or (= cnt 3) 
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(defn step 
  "Takes a set of living cells and returns the next 
generation (as a set too)."
  [living-cells]
  (letfn [(alive [[cell cnt]]
            (when (or (= cnt 3) 
                    (and (= cnt 2) (living-cells cell))) 
              cell))]
    (->> living-cells (mapcat neighbours) frequencies 
      (keep alive) set)))

Neighbours!
(defn neighbours [[x y]]
  (for [dx [-1 0 1]
        dy (if (zero? dx) [-1 1] [-1 0 1])]
    [(+ x dx) (+ y dy)]))
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Drafting code
Don’t go to the details

Draft high-level code you’d like to be 
able to write to solve the problem

Try to implement it

Negociate between practicality of 
implementation and draft code
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But it really hurts...
Ask for help

#clojure on IRC

Stackoverflow

clojure google group

reach your local user group

create your local user group

mail me christophe@cgrand.net

mailto:christophe@cgrand.net
mailto:christophe@cgrand.net

