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So Here I Am….  
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The Computer Science Lab 
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Telecom Applications: Issues 
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The Ancestors 
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Erlang Highlights 

Declarative 

Concurrent 

Robust 

Distributed 

Hot code loading 

Multicore Support 

OTP 

Functional programming  
language 

High abstraction level 
Pattern matching 

Concise readable programs 



© 2011 – Erlang Solutions Ltd. 

Erlang Highlights: Factorial 

n! = 
1 

n*(n-1)! 

n = 0 

n! 1 

Definition 

-module(ex1). 
-export([factorial/1]). 

factorial(0) -> 
   1; 
factorial(N) when N >= 1 -> 
   N * factorial(N-1). 

Implementation 

Eshell V5.0.1  (abort with ^G) 
1> c(ex1). 
{ok,ex1} 
2> ex1:factorial(6). 
720 

Factorial using Recursion 
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Erlang Highlights: High-level Constructs 

QuickSort using List Comprehensions 

-module(ex2). 
-export([qsort/1]). 

qsort([Head|Tail]) -> 
   First = qsort([X || X <- Tail, X =< Head]), 
   Last  = qsort([Y || Y <- Tail, Y > Head]), 
   First ++ [Head] ++ Last; 
qsort([]) -> 
   []. 

Eshell V5.0.1  (abort with ^G) 
1> c(ex2).                 
{ok,ex2} 
2> ex2:qsort([7,5,3,8,1]). 
[1,3,5,7,8] 

"all objects Y  
taken from the list  

Tail, where  
Y > Head" 
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Erlang Highlights: High-level Constructs 

<< SourcePort:16, DestinationPort:16, SequenceNumber:32,          
   AckNumber:32, DataOffset:4, _Reserved:4, Flags:8,  
   WindowSize:16, Checksum:16, UrgentPointer:16, 
   Payload/binary>> = Segment,  

OptSize = (DataOffset - 5)*32,  
<< Options:OptSize, Message/binary >> = Payload,  
<< CWR:1, ECE:1, URG:1, ACK:1, PSH:1,  
   RST:1, SYN:1, FIN:1>> = <<Flags:8>>, 

%% Can now process the Message according to the  
%% Options (if any) and the flags CWR, ..., FIN 

etc… 

Parsing a TCP packet using the Bit Syntax 



© 2011 – Erlang Solutions Ltd. 

Erlang Highlights 

Declarative 

Concurrent 

Robust 

Distributed 

Hot code loading 

Multicore Support 

OTP 

Either transparent or  
explicit concurrency 

Light-weight processes 
Highly scalable 
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Erlang Highlights: Concurrency 

Creating a new process using spawn 

-module(ex3). 
-export([activity/3]). 

activity(Name,Pos,Size) -> 
   ………… 

Pid = spawn(ex3,activity,[Joe,75,1024]) 

activity(Joe,75,1024) 
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Erlang Highlights: Concurrency 
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Erlang Highlights: Concurrency 

Processes communicate by asynchronous  
message passing 

Pid ! {data,12,13} receive 
    {start} -> ……… 
    {stop} -> ……… 
    {data,X,Y} -> ……… 
end 

receive 
    {start} -> ……… 
    {stop} -> ……… 
    {data,X,Y} -> ……… 
end 
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Erlang Highlights: Concurrency 
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Erlang Highlights 

Declarative 

Concurrent 

Robust 

Distributed 

Hot code loading 

Multicore Support 

OTP 

Simple and consistent 
error recovery 

Supervision hierarchies 
"Program for the correct case" 
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Erlang Highlights: Robustness 

Cooperating processes may be linked together 

using 
spawn_link(…,…,…) 
or 
link(Pid) 
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Erlang Highlights: Robustness 

When a process terminates, an exit signal is sent to all linked processes 

… and the termination is propagated 
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Erlang Highlights: Robustness 
Exit signals can be trapped and received as messages 

receive 
    {‘EXIT’,Pid,...} -> ... 
end 
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Erlang Highlights: Robustness 

Robust systems can be built by layering 

“Supervisors” 

“Workers” 
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Erlang Highlights 

Declarative 

Concurrent 

Robust 

Distributed 

Hot code loading 

Multicore Support 

OTP 

Explicit or transparent  
distribution 

Network-aware 
runtime system 
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Erlang Highlights: Distribution 

Erlang Run-Time System Erlang Run-Time System 

B ! Msg 

network 

C ! Msg 
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Erlang Highlights: Distribution 

loop() -> 
    receive 
        {From, {apply, M, F, A}} -> 
            Answer = apply(M, F, A), 
            From ! {rex, node(), Answer} 
            loop(); 
        _Other -> loop() 
    end. 

{rex, Node} ! {self(), {apply, M, F, A}}, 
receive 
    {rex, Node, What} -> What 
end 

{rex, Node} ! {self(), {apply, M, F, A}}, 
receive 
    {rex, Node, What} -> What 
end 

{rex, Node} ! {self(), {apply, M, F, A}}, 
receive 
    {rex, Node, What} -> What 
end 

loop() -> 
    receive 
        {From, {apply, M, F, A}} -> 
            Answer = apply(M, F, A), 
            From ! {rex, node(), Answer} 
            loop(); 
        _Other -> loop() 
    end. 

loop() -> 
    receive 
        {From, {apply, M, F, A}} -> 
            Answer = apply(M, F, A), 
            From ! {rex, node(), Answer} 
            loop(); 
        _Other -> loop() 
    end. 

loop() -> 
    receive 
        {From, {apply, M, F, A}} -> 
            Answer = apply(M, F, A), 
            From ! {rex, node(), Answer} 
            loop(); 
        _Other -> loop() 
    end. 

Simple Remote Procedure Call 
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Erlang Highlights 

Declarative 

Concurrent 

Robust 

Distributed 

Hot code loading 

Multicore Support 

OTP 

Easily change code in a  
running system 

Enables non-stop operation 
Simplifies testing 
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Erlang Highlights: Hot Code Swap 

Version 1 Version 2 
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Erlang Highlights 

SMP support provides linear  
scalability out of the box 
thanks to its no shared 

memory approach to concurrency.  

Declarative 

Concurrent 

Robust 

Distributed 

Hot code loading 

Multicore Support 

OTP 
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Ericsson’s strategy with SMP 

                      Make it work -> measure -> optimize 

Hide the problems and awareness of SMP from the programmer 
Programmed in the normal style using processes for encapsulation 
and parallelisation 
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Multicore Erlang 

Erlang VM 

Scheduler #1 

Scheduler #2 

run queue 

Scheduler #2 

Scheduler #N 

run queue 

run queue 

migration 
logic 

migration 
logic 
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Tilera “Tile64” 

Chatty 

500 processes created 

Each process randomly  
sends messages and  
receives a  response  
from all other  
processes 
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Multicore Benchmark – Big Bang  

Erlang/OTP R13B on Tilera Pro 64-core 
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Erlang Highlights 

Declarative 

Concurrent 

Robust 

Distributed 

Hot code loading 

Multicore Support 

OTP 

Provides the design patterns, 
libraries and tools to develop 

distributed fault tolerant systems. 
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Open Telecom Platform 

P 

T 

Applications & 
Libraries 

System Design 
Principles 
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OTP: System Design Principles 

A set of abstract principles and design rules. 
!  They describe the software architecture of an Erlang System 
!  Needed so existing tools will be compatible with them 
!  Facilitate understanding of the system among teams 

A set of generic behaviours. 
!  Each behaviour is a formalisation of a design pattern 
!  Contains frameworks with generic code 
!  Solve a common problem 
!  Have built in support for debugging and software upgrade 
!  Facilitate understanding of the sub blocks in the system   
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Erlang Highlights 

Declarative 

Concurrent 

Robust 

Distributed 

Hot code loading 

Multicore Support 

OTP 
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The Myths of Erlang…. 

Is it Documented? 

Is the developer supporting it? 

What visibility does support staff have into what is going on? 
!  SNMP 
!  Live Tracing 
!  Audit Trails 
!  Statistics 
!  CLI / HTTP Interface 

How much new code was actually written? 
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The Myths of Erlang…. 

Yes, it is easy for  
!  Simple patches 
!  Adding functionality without changing the state 

Non backwards compatible changes need time time 
!  Database schema changes 
!  State changes in your processes 
!  Upgrades in distributed environments 

Test, Test, Test 
!  A great feature when you have the manpower! 
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The Myths of Erlang…. 
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The Myths of Erlang…. 

99,999 (Five Nines) is a more like it! 
!  Achieved at a fraction of the effort of Java & C++ 

Upgrades are risky! 
Non Software related issues 
!  Power Outages 
!  Networking 
!  Hardware Faults 
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The Myths of Erlang…. 

99,999 (Five Nines) is a more like it! 
!  Achieved at a fraction of the effort of Java & C++ 

Upgrades are risky! 
Non Software related issues 
!  Power Outages 
!  Network Failures, Firewall Configurations 
!  Hardware Faults 
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Questions 
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More Information 

Programming Erlang  
!  Software for a Concurrent World 
!  by Joe Armstrong 

Erlang Programming 
!  A Concurrent Approach to Software Development 
!  by Francesco Cesarini & Simon Thompson 

Erlang and OTP in Action 
!  Large-scale software design with OTP  
!  by Richard Carlsson, Martin Logan & Eric Merrit 



© 2011 – Erlang Solutions Ltd. 


