
An Introduction to Erlang

Erlang Solutions Ltd

Francesco Cesarini
Founder, Technical Director

@FrancescoC
francesco@erlang-solutions.com

From behind the trenches…

GOTO Copenhagen
May 13th, 2011

© 2011 – Erlang Solutions Ltd.

So Here I Am….

© 2011 – Erlang Solutions Ltd.

The Computer Science Lab

© 2011 – Erlang Solutions Ltd.

Telecom Applications: Issues

Complex

No down time

Scalable

Maintainable

Distributed

 vs

Time to Market
Access transport and switching networks

Cellular
PLMN

PSTN/
ISDN

Data/ IP
Networks

CATV

Services

Past
Single-service networks

Clients/applications

Present
Multiservice networks/client server

Backbone
Network

Access Access Access

Content Content

Control

Communication
applications

Media
Gateways

© 2011 – Erlang Solutions Ltd.

The Ancestors

© 2011 – Erlang Solutions Ltd.

Erlang Highlights

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

Functional programming
language

High abstraction level
Pattern matching

Concise readable programs

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: Factorial

n! =
1

n*(n-1)!

n = 0

n! 1

Definition

-module(ex1).
-export([factorial/1]).

factorial(0) ->
 1;
factorial(N) when N >= 1 ->
 N * factorial(N-1).

Implementation

Eshell V5.0.1 (abort with ^G)
1> c(ex1).
{ok,ex1}
2> ex1:factorial(6).
720

Factorial using Recursion

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: High-level Constructs

QuickSort using List Comprehensions

-module(ex2).
-export([qsort/1]).

qsort([Head|Tail]) ->
 First = qsort([X || X <- Tail, X =< Head]),
 Last = qsort([Y || Y <- Tail, Y > Head]),
 First ++ [Head] ++ Last;
qsort([]) ->
 [].

Eshell V5.0.1 (abort with ^G)
1> c(ex2).
{ok,ex2}
2> ex2:qsort([7,5,3,8,1]).
[1,3,5,7,8]

"all objects Y
taken from the list

Tail, where
Y > Head"

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: High-level Constructs

<< SourcePort:16, DestinationPort:16, SequenceNumber:32,
 AckNumber:32, DataOffset:4, _Reserved:4, Flags:8,
 WindowSize:16, Checksum:16, UrgentPointer:16,
 Payload/binary>> = Segment,

OptSize = (DataOffset - 5)*32,
<< Options:OptSize, Message/binary >> = Payload,
<< CWR:1, ECE:1, URG:1, ACK:1, PSH:1,
 RST:1, SYN:1, FIN:1>> = <<Flags:8>>,

%% Can now process the Message according to the
%% Options (if any) and the flags CWR, ..., FIN

etc…

Parsing a TCP packet using the Bit Syntax

© 2011 – Erlang Solutions Ltd.

Erlang Highlights

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

Either transparent or
explicit concurrency

Light-weight processes
Highly scalable

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: Concurrency

Creating a new process using spawn

-module(ex3).
-export([activity/3]).

activity(Name,Pos,Size) ->
 …………

Pid = spawn(ex3,activity,[Joe,75,1024])

activity(Joe,75,1024)

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: Concurrency

10 100 1,000 10,000 100,000 Number of processes
1

10

100

1,000

M
ic

ro
se

co
nd

s/
pr

oc
es

s
erlang

java

C#

Source:
Joe Armstrong
SICS

Process
creation
time

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: Concurrency

Processes communicate by asynchronous
message passing

Pid ! {data,12,13} receive
 {start} -> ………
 {stop} -> ………
 {data,X,Y} -> ………
end

receive
 {start} -> ………
 {stop} -> ………
 {data,X,Y} -> ………
end

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: Concurrency

10 100 1,000 10,000 100,000 Number of processes
1

10

1,000

100,000

M
ic

ro
se

co
nd

s/
m

es
sa

ge

erlang
java

C#

10,000

100

1
Source:
Joe Armstrong
SICS

Message
passing
times

© 2011 – Erlang Solutions Ltd.

Erlang Highlights

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

Simple and consistent
error recovery

Supervision hierarchies
"Program for the correct case"

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: Robustness

Cooperating processes may be linked together

using
spawn_link(…,…,…)
or
link(Pid)

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: Robustness

When a process terminates, an exit signal is sent to all linked processes

… and the termination is propagated

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: Robustness
Exit signals can be trapped and received as messages

receive
 {‘EXIT’,Pid,...} -> ...
end

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: Robustness

Robust systems can be built by layering

“Supervisors”

“Workers”

© 2011 – Erlang Solutions Ltd.

Erlang Highlights

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

Explicit or transparent
distribution

Network-aware
runtime system

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: Distribution

Erlang Run-Time System Erlang Run-Time System

B ! Msg

network

C ! Msg

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: Distribution

loop() ->
 receive
 {From, {apply, M, F, A}} ->
 Answer = apply(M, F, A),
 From ! {rex, node(), Answer}
 loop();
 _Other -> loop()
 end.

{rex, Node} ! {self(), {apply, M, F, A}},
receive
 {rex, Node, What} -> What
end

{rex, Node} ! {self(), {apply, M, F, A}},
receive
 {rex, Node, What} -> What
end

{rex, Node} ! {self(), {apply, M, F, A}},
receive
 {rex, Node, What} -> What
end

loop() ->
 receive
 {From, {apply, M, F, A}} ->
 Answer = apply(M, F, A),
 From ! {rex, node(), Answer}
 loop();
 _Other -> loop()
 end.

loop() ->
 receive
 {From, {apply, M, F, A}} ->
 Answer = apply(M, F, A),
 From ! {rex, node(), Answer}
 loop();
 _Other -> loop()
 end.

loop() ->
 receive
 {From, {apply, M, F, A}} ->
 Answer = apply(M, F, A),
 From ! {rex, node(), Answer}
 loop();
 _Other -> loop()
 end.

Simple Remote Procedure Call

© 2011 – Erlang Solutions Ltd.

Erlang Highlights

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

Easily change code in a
running system

Enables non-stop operation
Simplifies testing

© 2011 – Erlang Solutions Ltd.

Erlang Highlights: Hot Code Swap

Version 1 Version 2

© 2011 – Erlang Solutions Ltd.

Erlang Highlights

SMP support provides linear
scalability out of the box
thanks to its no shared

memory approach to concurrency.

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

© 2011 – Erlang Solutions Ltd.

Ericsson’s strategy with SMP

 Make it work -> measure -> optimize

Hide the problems and awareness of SMP from the programmer
Programmed in the normal style using processes for encapsulation
and parallelisation

© 2011 – Erlang Solutions Ltd.

Multicore Erlang

Erlang VM

Scheduler #1

Scheduler #2

run queue

Scheduler #2

Scheduler #N

run queue

run queue

migration
logic

migration
logic

© 2011 – Erlang Solutions Ltd.

Tilera “Tile64”

Chatty

500 processes created

Each process randomly
sends messages and
receives a response
from all other
processes

© 2011 – Erlang Solutions Ltd.

Multicore Benchmark – Big Bang

Erlang/OTP R13B on Tilera Pro 64-core

© 2011 – Erlang Solutions Ltd.

Erlang Highlights

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

Provides the design patterns,
libraries and tools to develop

distributed fault tolerant systems.

© 2011 – Erlang Solutions Ltd.

Open Telecom Platform

P

T

Applications &
Libraries

System Design
Principles

© 2011 – Erlang Solutions Ltd.

OTP: System Design Principles

A set of abstract principles and design rules.
!  They describe the software architecture of an Erlang System
!  Needed so existing tools will be compatible with them
!  Facilitate understanding of the system among teams

A set of generic behaviours.
!  Each behaviour is a formalisation of a design pattern
!  Contains frameworks with generic code
!  Solve a common problem
!  Have built in support for debugging and software upgrade
!  Facilitate understanding of the sub blocks in the system

© 2011 – Erlang Solutions Ltd.

Erlang Highlights

Declarative

Concurrent

Robust

Distributed

Hot code loading

Multicore Support

OTP

© 2011 – Erlang Solutions Ltd.

© 2011 – Erlang Solutions Ltd.

The Myths of Erlang….

Is it Documented?

Is the developer supporting it?

What visibility does support staff have into what is going on?
!  SNMP
!  Live Tracing
!  Audit Trails
!  Statistics
!  CLI / HTTP Interface

How much new code was actually written?

© 2011 – Erlang Solutions Ltd.

© 2011 – Erlang Solutions Ltd.

The Myths of Erlang….

Yes, it is easy for
!  Simple patches
!  Adding functionality without changing the state

Non backwards compatible changes need time time
!  Database schema changes
!  State changes in your processes
!  Upgrades in distributed environments

Test, Test, Test
!  A great feature when you have the manpower!

© 2011 – Erlang Solutions Ltd.

© 2011 – Erlang Solutions Ltd.

The Myths of Erlang….

© 2011 – Erlang Solutions Ltd.

The Myths of Erlang….

99,999 (Five Nines) is a more like it!
!  Achieved at a fraction of the effort of Java & C++

Upgrades are risky!
Non Software related issues
!  Power Outages
!  Networking
!  Hardware Faults

© 2011 – Erlang Solutions Ltd.

The Myths of Erlang….

99,999 (Five Nines) is a more like it!
!  Achieved at a fraction of the effort of Java & C++

Upgrades are risky!
Non Software related issues
!  Power Outages
!  Network Failures, Firewall Configurations
!  Hardware Faults

© 2011 – Erlang Solutions Ltd.

Questions

© 2011 – Erlang Solutions Ltd.

More Information

Programming Erlang
!  Software for a Concurrent World
!  by Joe Armstrong

Erlang Programming
!  A Concurrent Approach to Software Development
!  by Francesco Cesarini & Simon Thompson

Erlang and OTP in Action
!  Large-scale software design with OTP
!  by Richard Carlsson, Martin Logan & Eric Merrit

© 2011 – Erlang Solutions Ltd.

