Above the Clouds:

Jonas Boner
CEO @ Scalable Solutions

Twitter: @jboner

[he problem

[t 1s way too hard to build:

|. correct highly concurrent systems
2. truly scalable systems

3. fault-tolerant systems that self-heals

..using “'state-of-the-art” tools

Vision

Simpler

Concurrency

Scalability

Fault-tolerance

Thursday, May 12, 2011

Vision

.with a single unified

Programming model

Runtime service

Thursday, May 12, 2011

Manage system overloaa

Thursday, May 12, 2011

(XXX X]] oo00000 eseosss
9= !

|

Scale up & Scale out

Thursday, May 12, 2011

L

\‘lo s,.\tt.\ 2, \nl \ \sr\

2e BN .s

AR

Thursday, May 12, 2011

© Bob Elsdale

Thursday, May 12, 2011

ARCHITECTURE

4 B
Fault-tolerance

Remote
Actor

Local

Actor

Supervision Supervision

4 N
Scalability
Client
Managed Cluster
Remote Membership
Actors
—
(")
Concurrency
Actors STM Agents Dataflow

CORE

—

-RVICES

Thursday, May 12, 2011

ARCHITECTURE

=

AMQP

~
7

Fault-tolerance

ADD-ON
MODULE

N
Scalability
Client Server
Managed Managed Cluster
Remote Remote Membership
Actors Actors

~
v

Concurrency

= =)=

Thursday, May 12, 2011

ARCHITECTURE
=[S
) e
alallal e

~

~

Fault-tolerance

Local Remote
Actor Actor
Supervision Supervision
' B
Scalability
Client Server
Managed Managed Cluster
Remote Remote Membership
Actors Actors

Concurrency

B

CLO
AK

N
.

Thursday, May 12, 2011

-

DY

>

WHERE IS AKKA USED?

SOME

- XAMPL

=S

FINANCE

® Stock trend Analysis & Simulation

® [vent-driven messaging systems

BETTING & GAMING

® Massive multiplayer online gaming

® High throughput and transactional

betting

TELECOM

® Streaming media network gateways

SIMULATION

® 3D simulation engines

E-COMMERCE

® Social media community sites

|
|
|

Thursday, May 12, 2011

Eventd —driver

7 Aread

Eventd —driver

7 Aread

4 clor

Be/’}a\//o/‘

State

Uall

Eventd —driver

7 Aread

Eventd —driver

7 Aread

Eventd —driver

7 Aread

Thursday, May 12, 2011

Eventd —drivenr

7 Aread

Akka

N the toolbox

ACtors

case object Tick

4 A

class Counter extends Actor {
var counter = 0

def receive = {
case Tick =>
counter += 1
println(counter)

Thursday, May 12, 2011

Create Actors

[val counter actor‘Of[Counter‘])

counter is an ActorRef

Start actors

Gal counter = actorOf|[Counter]. star‘t)

Stop actors

4)

val counter = actorOf|[Counter].start
counter.stop ,

Send: |

[counter‘ ! Tick)

fire-forget

4)
// returns a future
val future = actor !!! Message

future.await
val result = future.result

_ /

returns the Future directly

Thursday, May 12, 2011

Future

val futurel, future2, future3 =
Future.empty[String]

~

futurel.await
future2.onComplete(f => ...)

futurel.completeWithResult(...)
future2.completeWithException(...)
future3.completeWith(future2)

futurel receive {
case Foo(bar) => “foo”
}.await.result

_ /

Thursday, May 12, 2011

Future

val f1

Futures.future(callable)

val f2 = Futures.firstCompletedOf(futures)
val f3 = Futures.reduce(futures)((x, y) => ..)
val f4 = Futures.fold(zero)(futures)((x, y) => ...)

_ /

Thursday, May 12, 2011

Future

/val futurel = for { \

a: Int <- actor !l! "Hello" // returns 5
b: String <- actor !!!l a // returns "10"
c: String <- actor !l 7 // returns "14"
} yield b + "-" + ¢
val future2 = for {
a <- actor !!! Req("Hello") collect { case Res(x: Int) => X }
b <- actor !!!l Req(a) collect { case Res(x: String) => x }
c <- actor !!! Req(7) collect { case Res(x: String) => x }
} yield b + "-" + ¢

_ /

Thursday, May 12, 2011

Dataflow

4)

import Future.flow

val x, y, z = Promise[Int]()

flow {

z << x() + y()
println("z = " + z())
}
flow { x << 40 }

flow { v << 2 }

_ /

Thursday, May 12, 2011

(val result = (actor !! Message).as[Str‘ingD

uses Future under the hood and blocks untll
timeout or completionr

Thursday, May 12, 2011

Reply

-

class SomeActor extends Actor {

def receive = {
case User(name) =>
// use reply
self.reply(“Hi ” + name)

~

/

Thursday, May 12, 2011

HotoSwap

-~

self become {

// new body
case NewMessage =>

HotoSwap

-

actor ! HotSwap {

// new body
case NewMessage =>

~

HotoSwap

C self. unbecome(D

Set dispatcher

-~

self.dispatcher

}...

actor.dispatcher

_

class MyActor extends Actor {

= Dispatchers

.newThreadBasedDispatcher(self)

dispatcher // before started

/

Thursday, May 12, 2011

Aarelgs

Remote Server

-~

_

// use host & port in config
Actor.remote.start()

~

Actor.remote.start("localhost”, 2552)

/

Scalable im

D

ementa

NIO (Netty) &

‘lon based on

“rotobuf

Iwo types of
remote actors

Client initiated & managed
Server Initiated & managed

Client-managed

supervision works across nodes

4)

import Actor.
val service = remote.actorOf[MyActor](host, port)

service ! message

_ /

Server-managed

register and manage actor on server
client gets "dumb’ proxy handle

-

import Actor.

~

remote.register(“service:id”, actorOf[MyService])

L /

server part

Server-managed

val service = remote.actorFor(
“service:1d”,
“darkstar?”,
9999)

service ! message

client part

Server-managed

/s)

import Actor.

remote.register(actorOf[MyService])
remote.registerByUuid(actorOf[MyService])
remote.registerPerSession(

“service:id”, actorOf[MyService])

remote.unregister(“service:id”)
remote.unregister(actorRef)

_ /

server part

Thursday, May 12, 2011

Deployment (local vs remote) Is a dev C

Remoting in Akka .0

Remote Actors
Client-managec
Server-managed

roblem

We get a fixed and hard-coded topology
Can't change it dynamically and adaptively

Needs to be a
deployment & runtime decision

—

ecision

_ _______J

(In C

evelo

rment for u

Actors
bcoming Akka 2.0)

Address

(val actor = actorOf[MyActor](“my-ser‘vice”))

Bind the actor to a virtual address

Thursday, May 12, 2011

Deployment

* Actor address Is virtual and decoupled from how It
s deployed
¢ |f no deployment configuration exists then actor is
deployed as local
* [he same system can be configured as distributed |
without code change (even change at runtime) r

|

|

| * Write as local but deploy as distributed in the
| cloud without code change

" Allows runtime to dynamically and adaptively
- change topology (

|

—_—

Thursday, May 12, 2011

Deployment configuration

-~

akka {
actor {
deployment {
my-service {

~

router = "least-cpu”

clustered {
home
replicas
stateless

"node:test-node-1"
3
on

Deployment configuration

4)
akka { 240’&@55]
actor {)
deploym {

my-service {

router = "least-cpu”

clustered {
home = "node:test-node-1"
replicas = 3
stateless = on

}

}
}
}

Deployment configuration

4 - =
akka { 2 Address] Type of
actor {)
moart {

[oad-ba/ anc/ngj

deploy A
my-service { /44;
router = "least-cpu”
clustered {
home = "node:test-node-1"
replicas = 3
stateless = on
}
}
}
}
}

Deployment configuration

-~

akka {

actor {

-

7;//9.9, of’

-

-
Clewstere

or loca/

o

deploy
my-s
ro

cl

‘%

J

}

ervice {
uter
ustered {
home

replicas
stateless

"least-cpu”

—-
Address]
. 2{ // oad -ba/ anc/ngj

"node:test-node-1"
3
on

Deployment configuration

-~

akka {
actor {
deploy
my-s
ro
cl

-

p
Clewstered

‘%

or loca/

g }

-

7;//9@ of’

ervice {
uter
ustered {
home

replicas
stateless

—-
Address]
. 2{ / / oao/ —-Aﬁ/ d/?Cl/hgj

"least-cpu”

"node:test-node-1"

3
on \ Yome node j

Deployment configuration

4 - =
akka { 2 Address] Type of
actor {)
moart {

/ oad —-Aﬁ/ d/?Cl/hgj

deploy A
my-service { /44;
router = "least-cpu”

clustered {

’1:/ . 07:777’ home = "node:test-node-1"
“uStere replicas = 3 ‘\Qii:
r Loca/ stateless = o
L = = y } \ Yome node j
} ’ L
} N, r of rep/ 1cas
} in ClesSter
} _ Y

_ J

Thursday, May 12, 2011

Deployment configuration

4 y ~
akka { 2 Address] Type of
actor {)
mgat {

Joad —bal. anc/ngj

deploy A
my-service { /44;
router = "least-cpu”

clustered {

(13/ Z a;:;;7, home = "node:test-node-1"
“ocere replicas = 3
or Z.oca/) } stateless = o S omre node j
} |
/ < | | D
SZ‘QZ‘@{Z(/ o) /\//‘ Of rep//caj
State/ess L in Cluster ,

- .) /

Thursday, May 12, 2011

The rurmme prowdes

| * Subscription-based cluster membership service

* Highly available cluster registry for actors

* Automatic cluster-wide deployment

- Highly avallable centralized configuration service
|« Automatic replication with automatic fail-over upon
| node crash
' * Transparent and user-configurable load-balancing |
' * [ransparent adaptive cluster rebalancing f‘
' » L eader election
~* Durable mailboxes - guaranteed delivery ‘

Thursday, May 12, 2011

Upcoming features

* Publish/Subscribe (broker and broker-less)
| » Compute Grid (MapReduce) |
|+ Data Grid (querying etc)

| * Distributed STM (Transactional Memory)
' Event Sourcing |

~ — - g — — S — — = - — - — —

e ——— — — _p—— ——— e —— — p——————

Thursday, May 12, 2011

Thursday, May 12, 2011

Thursday, May 12, 2011

Akka

Cluster Node

Thursday, May 12, 2011

Akka
Cluwster Node

r

Akka Akka
C/uster Node C/ester Node

r

Akka Akka
C/uster Node C/uster Node

Thursday, May 12, 2011

r

Ak
C/uster Node

Akka
C/uster Node

Akka
Cluwster Node

r

Ak
C/ester Node

r

Akka
C/uster Node

Thursday, May 12, 2011

r

Akka
Cluwster Node

Akka
Cluwster Node

akka { “\\
actor { g

deployment { Akka

ping {} Cluster Node

pong {
router = "round-robin"

clustered {
replicas
stateless

¥
}
¥

3
on

r

Akka
C/uster Node

r

Akka
Cluster Node

Thursday, May 12, 2011

Akka
Cluwster Node

akka {
actor {
deployment {
ping {}
pong {

router = "round-robin"

clustered {
replicas
stateless

~

(

Akka
Cluster Node

3
on

r

Akka
C/uster Node

r

Akka
Cluster Node

Thursday, May 12, 2011

=

akka {
actor {
deployment {

~

ping {}
pong {

clustered {
replicas
stateless

3
on

router = "round-robin"

/

r

Akka
C/uster Node

Thursday, May 12, 2011

akka {
actor {
deployment| {
ping {}
pong {

rolLit

r

e
Z OO Keeper

Ens eMA/ e

Akka
Cluster Node

Thursday, May 12, 2011

fault-tolerance

1 he

moael

Thursday, May 12, 2011

- - e

.. lel ‘5 Z‘dée A
standard OO

.L‘.-‘ el

‘ 7Y Vo lla¥g, Ciomponenfé Aave

- critical Ny importapt state

C/ assSificalion of SZ‘QZ‘&
" Scratch data f‘
- Static data

- S&(pp/ red ad boot Tine
" Sapp/ red A}/ oZ‘/’/e/‘ Ciomponen’é‘é

| © Dyna/n/c dad a
|

g In/%(z‘ £ fonr ot /7@/‘ SourlesS dcla |

|
‘
|

- Data poééfé/e o /‘eCO/y/paZ‘e

thad 1S /‘Mpo\S S /‘A/ e Co /‘eCLOM/OL(Z‘e
_ _ .)

— — —_— — = - — __ ___ __ — — — — — __——— _— — _— ——— - __ —

* Ihput From other Sources ; data
AL 15 /‘MPOS sible Zo reCLoMPL(Z‘e

Thursday, May 12, 2011

Mees? Ae
protected
éy any Peans

|
|

- In/%(z‘ r” Forn oz‘/ver Sources ;, data
AL 15 /MPOSS/A/e Zo /‘eCLOM/OL(Z‘e

3 “e_ o ’ AV 3 «% \
0' . — ., ’.{ /’ "‘, (‘-

| P
Rkl " /,}, '
. fil‘ '.('_i // .",/

a"‘,/ |
o
.
f

A

7/

! / o

Thursday, May 12, 2011

ERROR
KERNEL

Thursday, May 12, 2011

ERROR
KERNEL

Thursday, May 12, 2011

ERROR
KERNEL

Thursday, May 12, 2011

ERROR
KERNEL

Thursday, May 12, 2011

ERROR
KERNEL

O ARQ0Y
OLONC

%

00O OO 0OC

Thursday, May 12, 2011

ERROR
KERNEL

O ARQ0Y
OLONC

%

00O OO 0OC

Thursday, May 12, 2011

ERROR
KERNEL

FOAHDAOY
OLONTC

\C
D C

Thursday, May 12, 2011

ERROR
KERNEL

Thursday, May 12, 2011

ERROR
KERNEL

Yy C
SOORC
(O O@

Thursday, May 12, 2011

ERROR
KERNEL

Yy C
SOOI
(O O@

Thursday, May 12, 2011

ERROR
KERNEL

Sloxel®

Thursday, May 12, 2011

ERROR
KERNEL

Sloxel®

Thursday, May 12, 2011

ERROR
KERNEL

Thursday, May 12, 2011

ERROR
KERNEL

Thursday, May 12, 2011

Thursday, May 12, 2011

Thursday, May 12, 2011

NODE 1 NODE 2

Thursday, May 12, 2011

LInking

-~

_

link(actor)
unlink(actor)

startLink(actor)

spawnLink[MyActor]

,/

-ault handlers

e O
AllForOneStrategy(

errors,
maxNrOfRetries,
withinTimeRange)

OneForOneStrategy(
errors,
maxXNrOfRetries,

withinTimeRange)
_ /

Supervision

4 A

class Supervisor extends Actor {
faultHandler = AllForOneStrategy(
List(classOf[IllegalStateException])
5, 5000))

def receive = {
case Register(actor) => link(actor)

¥

}
_ ,/

Thursday, May 12, 2011

Manage faillure

}
\§

/,class FaultTolerantService extends Actor {

override def preRestart(reason: Throwable) = {
... // clean up before restart

}
override def postRestart(reason: Throwable) =
. // 1init after restart

}..

~

{

/

Thursday, May 12, 2011

..and
STM

FSM
HT TP Camel
Microkernel Gulce
JTA
Dataflo
0OSG Y AMQP

scalaz Spring Security

o be released today

http://jonasboner.com/
http://jonasboner.com/

http://akka.io

http://jonasboner.com/
http://jonasboner.com/

Thursday, May 12, 2011

