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[ he problem

[t 1s way too hard to build:

|. correct highly concurrent systems
2. truly scalable systems

3. fault-tolerant systems that self-heals

..using “'state-of-the-art” tools
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Vision

.with a single unified

Programming model

Runtime service
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Manage system overloaa
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WHERE IS AKKA USED?

SOME

- XAMPL

=S

FINANCE

® Stock trend Analysis & Simulation

® [vent-driven messaging systems

BETTING & GAMING

® Massive multiplayer online gaming

® High throughput and transactional

betting

TELECOM

® Streaming media network gateways

SIMULATION

® 3D simulation engines

E-COMMERCE

® Social media community sites




|
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Eventd —drivenr

7 Aread




Akka

N the toolbox




ACtors

case object Tick

4 A

class Counter extends Actor {
var counter = 0

def receive = {
case Tick =>
counter += 1
println(counter)
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Create Actors

[ val counter actor‘Of[Counter‘])

counter is an ActorRef




Start actors

Gal counter = actorOf|[Counter]. star‘t)




Stop actors

4 )

val counter = actorOf|[Counter].start
counter.stop ,




Send: |

[counter‘ ! Tick)

fire-forget




4 )
// returns a future
val future = actor !!! Message

future.await
val result = future.result

\_ /

returns the Future directly
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Future

val futurel, future2, future3 =
Future.empty[String]

~

futurel.await
future2.onComplete(f => ...)

futurel.completeWithResult(...)
future2.completeWithException(...)
future3.completeWith(future2)

futurel receive {
case Foo(bar) => “foo”
}.await.result

\_ /
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Future

val f1

Futures.future(callable)

val f2 = Futures.firstCompletedOf(futures)
val f3 = Futures.reduce(futures)((x, y) => ..)
val f4 = Futures.fold(zero)(futures)((x, y) => ...)

\_ /
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Future

/val futurel = for { \

a: Int <- actor !l! "Hello" // returns 5
b: String <- actor !!!l a // returns "10"
c: String <- actor !l 7 // returns "14"
} yield b + "-" + ¢
val future2 = for {
a <- actor !!! Req("Hello") collect { case Res(x: Int) => X }
b <- actor !!!l Req(a) collect { case Res(x: String) => x }
c <- actor !!! Req(7) collect { case Res(x: String) => x }
} yield b + "-" + ¢

\_ /
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Dataflow

4 )

import Future.flow

val x, y, z = Promise[Int]()

flow {

z << x() + y()
println("z = " + z())
}
flow { x << 40 }

flow { v << 2 }

\_ /
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(val result = (actor !! Message).as[Str‘ingD

uses Future under the hood and blocks untll
timeout or completionr
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Reply

-

class SomeActor extends Actor {

def receive = {
case User(name) =>
// use reply
self.reply(“Hi ” + name)

~

/
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HotoSwap

-~

self become {

// new body
case NewMessage =>




HotoSwap

-

actor ! HotSwap {

// new body
case NewMessage =>

~




HotoSwap

C self. unbecome(D




Set dispatcher

-~

self.dispatcher

}...

actor.dispatcher

\_

class MyActor extends Actor {

= Dispatchers

.newThreadBasedDispatcher(self)

dispatcher // before started

/
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Remote Server

-~

\_

// use host & port in config
Actor.remote.start()

~

Actor.remote.start("localhost”, 2552)

/

Scalable im

D

ementa

NIO (Netty) &

‘lon based on

“rotobuf




Iwo types of
remote actors

Client initiated & managed
Server Initiated & managed




Client-managed

supervision works across nodes

4 )

import Actor.
val service = remote.actorOf[MyActor](host, port)

service ! message

\_ /




Server-managed

register and manage actor on server
client gets "dumb’ proxy handle

-

import Actor.

~

remote.register(“service:id”, actorOf[MyService])

L /

server part




Server-managed

val service = remote.actorFor(
“service:1d”,
“darkstar?”,
9999)

service ! message

client part




Server-managed

/s )

import Actor.

remote.register(actorOf[MyService])
remote.registerByUuid(actorOf[MyService])
remote.registerPerSession(

“service:id”, actorOf[MyService])

remote.unregister(“service:id”)
remote.unregister(actorRef)

\_ /

server part
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Deployment (local vs remote) Is a dev C

Remoting in Akka .0

Remote Actors
Client-managec
Server-managed

roblem

We get a fixed and hard-coded topology
Can't change it dynamically and adaptively

Needs to be a
deployment & runtime decision

—

ecision

_ _______J




(In C

evelo

rment for u

Actors
bcoming Akka 2.0)




Address

(val actor = actorOf[MyActor](“my-ser‘vice”))

Bind the actor to a virtual address
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Deployment

* Actor address Is virtual and decoupled from how It
s deployed
¢ |f no deployment configuration exists then actor is
deployed as local
* [he same system can be configured as distributed |
without code change (even change at runtime) r

|

|

| * Write as local but deploy as distributed in the
| cloud without code change

" Allows runtime to dynamically and adaptively
- change topology (

|

—_—
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Deployment configuration

-~

akka {
actor {
deployment {
my-service {

~

router = "least-cpu”

clustered {
home
replicas
stateless

"node:test-node-1"
3
on




Deployment configuration

4 )
akka { 240’&@55 ]
actor { )
deploym {

my-service {

router = "least-cpu”

clustered {
home = "node:test-node-1"
replicas = 3
stateless = on

}

}
}
}




Deployment configuration

4 - =
akka { 2 Address ] Type of
actor { )
moart {

[oad-ba/ anc/ngj

deploy A
my-service { /44;
router = "least-cpu”
clustered {
home = "node:test-node-1"
replicas = 3
stateless = on
}
}
}
}
}




Deployment configuration

-~
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-
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Deployment configuration

-~

akka {
actor {
deploy
my-s
ro
cl

-
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Deployment configuration

4 - =
akka { 2 Address ] Type of
actor { )
moart {

/ oad —-Aﬁ/ d/?Cl/hgj

deploy A
my-service { /44;
router = "least-cpu”

clustered {

’1:/ . 07:777’ home = "node:test-node-1"
“uStere replicas = 3 ‘\Qii:
r Loca/ stateless = o
L = = y } \ Yome node j
} ’ L
} N, r of rep/ 1cas
} in ClesSter
} _ Y

\_ J
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Deployment configuration

4 y ~
akka { 2 Address ] Type of
actor { )
mgat {

Joad —bal. anc/ngj

deploy A
my-service { /44;
router = "least-cpu”

clustered {

(13/ Z a;:;;7, home = "node:test-node-1"
“ocere replicas = 3
or Z.oca/) } stateless = o S omre node j
} |
/ < | | D
SZ‘QZ‘@{Z(/ o) /\//‘ Of rep//caj
State/ess L in Cluster ,

- . ) /
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The rurmme prowdes

| * Subscription-based cluster membership service

* Highly available cluster registry for actors

* Automatic cluster-wide deployment

- Highly avallable centralized configuration service
|« Automatic replication with automatic fail-over upon
| node crash
' * Transparent and user-configurable load-balancing |
' * [ransparent adaptive cluster rebalancing f‘
' » L eader election
~* Durable mailboxes - guaranteed delivery ‘
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Upcoming features

* Publish/Subscribe (broker and broker-less)
| » Compute Grid (MapReduce) |
|+ Data Grid (querying etc)

| * Distributed STM (Transactional Memory)
' Event Sourcing |

~ — - g — — S — — = - — - — —

e ——— — — _p—— ——— e —— — p——————
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Akka

Cluster Node
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Akka
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Akka
Cluwster Node

Akka
Cluwster Node

akka { “\\
actor { g

deployment { Akka

ping {} Cluster Node

pong {
router = "round-robin"

clustered {
replicas
stateless

¥
}
¥

3
on

r

Akka
C/uster Node

r

Akka
Cluster Node
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Akka
Cluwster Node

akka {
actor {
deployment {
ping {}
pong {

router = "round-robin"

clustered {
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stateless

~

(

Akka
Cluster Node

3
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=

akka {
actor {
deployment {

~

ping {}
pong {

clustered {
replicas
stateless

3
on

router = "round-robin"

/

r

Akka
C/uster Node
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akka {
actor {
deployment| {
ping {}
pong {
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ERROR
KERNEL
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NODE 1 NODE 2
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LInking

-~

\_

link(actor)
unlink(actor)

startLink(actor)

spawnLink[MyActor]

,/




-ault handlers

e O
AllForOneStrategy(

errors,
maxNrOfRetries,
withinTimeRange)

OneForOneStrategy(
errors,
maxXNrOfRetries,

withinTimeRange)
\_ /




Supervision

4 A

class Supervisor extends Actor {
faultHandler = AllForOneStrategy(
List(classOf[IllegalStateException])
5, 5000))

def receive = {
case Register(actor) => link(actor)

¥

}
\_ ,/
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Manage faillure

}
\§

/,class FaultTolerantService extends Actor {

override def preRestart(reason: Throwable) = {
... // clean up before restart

}
override def postRestart(reason: Throwable) =
. // 1init after restart

}..

~

{

/
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..and
STM

FSM
HT TP Camel
Microkernel Gulce
JTA
Dataflo
0OSG Y AMQP

scalaz Spring  Security




o be released today



http://jonasboner.com/
http://jonasboner.com/

http://akka.io
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