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[Java, ...] What are we missing?

•Virtual Machine
–Modularity, Lifecycle & Isolation
–Lower memory footprint
–Predictable GC pauses

•Platform
–Distributed system as a system
–Provisioning and Metering
–Cloud Operating System APIs
–Persistence (including key/value)
–Map/Reduce-style processing

•Application Definition
–Packaging, Resource Declaration
–Security
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About the Speaker
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■ Language Geek  Emacs/TeX Hacker, 
Objective C, NeXT, GNU Compiled Java, 
Java Generics, Ph.D.

■ Developer J2EE AppServer, 
CORBA/RMI, XA-TM, Java Firefighter 

■ Trifork CTO Conference “Editor”, 
Technology Adoption
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’90s Object Revolution
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Fault Tolerance, Availability, QoS
Integration, Coordination

Cloud, Multi-Core

More Complexity We’re struggling to

handle these with an

object mindset! 
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What’s a 
Revolution?

Thomas Kuhn
The Structure of Scientific Revolutions
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Ralph Johns
on’s blog

“Erlang, th
e Next Java

”

... Erlang 
is going to

 be a 

very import
ant languag

e ... 

Its main ad
vantage is 

that it 

is perfectl
y suited fo

r the 

multi-core,
 web servic

es 

future. In 
fact, it is

 the 

ONLY mature
, rock-soli

d 

language th
at is suita

ble for 

writing hig
hly scalabl

e 

systems to 
run on mult

icore 

machines.
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Objects

anomalies

        Actors

Quest in this talk:

If Actor-Programming 

is the new Paradigm, 

What are the anomalies 

we should see now?
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Making reliable 
distributed control systems 
in the presence of errors

■ The “secret weapon” for 
Ericsson’s market leading, 
real-time telephony 
systems.

■ 20+ years of experience 
to learn from.
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How to Learn Erlang
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How to Learn Erlang

Don’t dissect a frog,

Build One!
Nicolas Neg

roponte
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Your favorite OS

BEAM Emulator

Your Erlang Program

Platform Framework

BIFs
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Java Virtual Machine

Your favorite OS

ERJANG

Your Erlang Program

Platform Framework

JV
M

BIFs
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Randomized Tests
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Anomalies in 
the object-oriented

 world view
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7 6

implementationinterface

 !

 !

Graphics from Object-Oriented Programming with Objective C, Apple, 201125
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Interface
Fixed API

Actors
Protocol 

API changes
with internal state
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Use Objects!

... heard in the ‘90s

Monday, May 16, 2011



But isn’t this expensive?

32

Use Objects!
100.000’s of objects, 

are you crazy?

... heard in the ‘90s
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But isn’t this expensive?
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But isn’t this expensive?
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Use Actors!
100.000’s of processes, 

silly you!

... heard yesterday
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Effect Containment

■ Functional languages 
disallow effects

■ Many object-oriented 
styles encourage side 
effects. 

■ Actors confine effects
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From C++ to Java Garbage Collection

From Java to Erlang State Confinement
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Activity Composition
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■ Pattern matching is polymorphism for values

■ Erlang data stores (like Mnesia) just store 
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“Object” Model Anomalies

■ Thread & Locks

■ Interfaces with Fixed API

■ Defensive Code 

■ RPC/RMI

■ Boilerplate code for persistence
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Actor “Solutions”

■ Processes w/ state containment

■ Protocols

■ Let it Fail

■ Async Messaging

■ Send & store simple Data
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Back in The Real World
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Erlang/OTP
Open Telecommunications Platform

■ Embedded 
Distributed Systems

■ High Availability

■ In-Production 
Upgrades
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OTP Actor Behaviors

■ Servers

■ Event Handlers

■ Finite State Machine

■ Supervisors

■ Networking: TCP, HTTP
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Async Messaging
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sync

Async Messaging
State [Fault] Containment

Fault Monitoring
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Yes, write-conflicts do occur. 
Deal with it!
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Who Else Uses Erlang?
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or something else will.

—Cameron Purdy

@drkrab

Monday, May 16, 2011



Thank You.

59

Java either steps up, 
or something else will.

—Cameron Purdy

@drkrab

Monday, May 16, 2011



Monday, May 16, 2011


