
Kresten Krab Thorup
CTO, Trifork

Erlang, The Road Movie
Lessons learned in Erlang Land

1

@drkrab

Monday, May 16, 2011



2

[Java, ...] What are we missing?

•Virtual Machine
–Modularity, Lifecycle & Isolation
–Lower memory footprint
–Predictable GC pauses

•Platform
–Distributed system as a system
–Provisioning and Metering
–Cloud Operating System APIs
–Persistence (including key/value)
–Map/Reduce-style processing

•Application Definition
–Packaging, Resource Declaration
–Security

Monday, May 16, 2011



Kresten Krab Thorup
CTO, Trifork

Erlang, The Road Movie
Lessons learned in Erlang Land

3
Monday, May 16, 2011



About the Speaker

4

■ Language Geek  Emacs/TeX Hacker, 
Objective C, NeXT, GNU Compiled Java, 
Java Generics, Ph.D.

■ Developer J2EE AppServer, 
CORBA/RMI, XA-TM, Java Firefighter 

■ Trifork CTO Conference “Editor”, 
Technology Adoption

Monday, May 16, 2011



’90s Object Revolution

5
Monday, May 16, 2011



Simula
Smalltalk Java

Objective-C

C#
C++

Object Technology

Ruby

6
Monday, May 16, 2011



Simula
Smalltalk Java

Objective-C

C#
C++

Ruby

OOA&D

UML

Object Thinking Tools
Patterns DDD

7
Monday, May 16, 2011



What was pushing us?

Increased
Complexity

8
Monday, May 16, 2011



What was pushing us?

Increased
Complexity

8

Internet

Monday, May 16, 2011



What was pushing us?

Better Technology

Increased
Complexity

8

Internet

Monday, May 16, 2011



What was pushing us?

Better Technology
Component Reuse

Increased
Complexity

8

Internet

Monday, May 16, 2011



What was pushing us?

Better Technology
Component Reuse

Domain Modeling

Increased
Complexity

8

Internet

Monday, May 16, 2011



9

More Complexity

Monday, May 16, 2011



9

More Complexity

Monday, May 16, 2011



10

More Complexity

Monday, May 16, 2011



More Complexity

11
Monday, May 16, 2011



Fault Tolerance, Availability, QoS

More Complexity

11
Monday, May 16, 2011



Fault Tolerance, Availability, QoS
Integration, Coordination

More Complexity

11
Monday, May 16, 2011



Fault Tolerance, Availability, QoS
Integration, Coordination

Cloud, Multi-Core

More Complexity

11
Monday, May 16, 2011



Fault Tolerance, Availability, QoS
Integration, Coordination

Cloud, Multi-Core

More Complexity We’re struggling to

handle these with an

object mindset! 

11
Monday, May 16, 2011



Fault Tolerance, Availability, QoS
Integration, Coordination

Cloud, Multi-Core

Time for a new
revolution?

12
Monday, May 16, 2011



Fault Tolerance, Availability, QoS
Integration, Coordination

Cloud, Multi-Core

Time for a new
revolution?

12

Cloud

Monday, May 16, 2011



What’s a 
Revolution?

Thomas Kuhn
The Structure of Scientific Revolutions

13
Monday, May 16, 2011



paradigm

paradigm

14
Monday, May 16, 2011



paradigm

paradigm

14
Monday, May 16, 2011



paradigm

paradigm

normal 
science

14
Monday, May 16, 2011



paradigm

paradigm

normal 
science

observe
anomalies

14
Monday, May 16, 2011



paradigm

paradigm

normal 
science

CRISIS

observe
anomalies

14
Monday, May 16, 2011



paradigm

paradigm

normal 
science

CRISIS

observe
anomalies

14

revolutionary 
science

Monday, May 16, 2011



paradigm

paradigm

normal 
science

normal 
science

CRISIS

observe
anomalies

14

revolutionary 
science

Monday, May 16, 2011



Fault Tolerance, Availability, QoS
Integration, Coordination

Cloud, Multi-Core

What is the 
right paradigm to 
cope with these?

15
Monday, May 16, 2011



Fault Tolerance, Availability, QoS
Integration, Coordination

Cloud, Multi-Core

Haskell, Scala
Erlang, Actor Models

Clojure, Node.js

What is the 
right paradigm to 
cope with these?

15
Monday, May 16, 2011



Fault Tolerance, Availability, QoS
Integration, Coordination

Cloud, Multi-Core

Haskell, Scala
Erlang, Actor Models

Clojure, Node.js

What is the 
right paradigm to 
cope with these?

15

Ralph Johns
on’s blog

“Erlang, th
e Next Java

”

... Erlang 
is going to

 be a 

very import
ant languag

e ... 

Its main ad
vantage is 

that it 

is perfectl
y suited fo

r the 

multi-core,
 web servic

es 

future. In 
fact, it is

 the 

ONLY mature
, rock-soli

d 

language th
at is suita

ble for 

writing hig
hly scalabl

e 

systems to 
run on mult

icore 

machines.

Monday, May 16, 2011



Objects

        Actors

16
Monday, May 16, 2011



Objects

        Actors

16
Monday, May 16, 2011



Objects

anomalies

        Actors

16
Monday, May 16, 2011



Objects

anomalies

        Actors

Quest in this talk:

If Actor-Programming 

is the new Paradigm, 

What are the anomalies 

we should see now?

16
Monday, May 16, 2011



17

Monday, May 16, 2011



18

Making reliable 
distributed control systems 
in the presence of errors

Monday, May 16, 2011



18

Making reliable 
distributed control systems 
in the presence of errors

Monday, May 16, 2011



18

Making reliable 
distributed control systems 
in the presence of errors

■ The “secret weapon” for 
Ericsson’s market leading, 
real-time telephony 
systems.

Monday, May 16, 2011



18

Making reliable 
distributed control systems 
in the presence of errors

■ The “secret weapon” for 
Ericsson’s market leading, 
real-time telephony 
systems.

■ 20+ years of experience 
to learn from.

Monday, May 16, 2011



How to Learn Erlang

19
Monday, May 16, 2011



How to Learn Erlang

Don’t dissect a frog,

Build One!
Nicolas Neg

roponte

19
Monday, May 16, 2011



Your favorite OS

BEAM Emulator

Your Erlang Program

Platform Framework

BIFs

20

Monday, May 16, 2011



Your favorite OS

BEAM Emulator

Your Erlang Program

Platform Framework

BIFs

20

Monday, May 16, 2011



Java Virtual Machine

Your favorite OS

ERJANG

Your Erlang Program

Platform Framework

JV
M

BIFs

21

Monday, May 16, 2011



22

Monday, May 16, 2011



Randomized Tests

23

Monday, May 16, 2011



Anomalies in 
the object-oriented

 world view

24

Monday, May 16, 2011



9
10

11

8
7 6

implementationinterface

 !

 !

Graphics from Object-Oriented Programming with Objective C, Apple, 201125

Monday, May 16, 2011



method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

26

Encapsulation

Monday, May 16, 2011



method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

27

Monday, May 16, 2011



method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

27

Monday, May 16, 2011



method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

27

Monday, May 16, 2011



method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

27

Monday, May 16, 2011



method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

27

Monday, May 16, 2011



method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

27

Anom
aly

Monday, May 16, 2011



28

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method
m

et
ho

d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

Monday, May 16, 2011



28

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method
m

et
ho

d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

Monday, May 16, 2011



28

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method
m

et
ho

d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

Monday, May 16, 2011



method

m
et

ho
d

method
m

ethod

data

Faucet

Faucet

Faucet

mailbox

Active Object +
State Machine

29

Monday, May 16, 2011



method

m
et

ho
d

method
m

ethod

data

Faucet

Faucet

Faucet

mailbox

Active Object +
State Machine

29

Monday, May 16, 2011



method

m
et

ho
d

method
m

ethod

data

Faucet

Faucet

Faucet

mailbox

30

Active Object +
State Machine

Monday, May 16, 2011



method

m
et

ho
d

method
m

ethod

data

Faucet

Faucet

Faucet

mailbox

30

Active Object +
State Machine

Monday, May 16, 2011



Objects
Interface
Fixed API

Actors
Protocol 

API changes
with internal state

31

Monday, May 16, 2011



Objects
Interface
Fixed API

Actors
Protocol 

API changes
with internal state

31

Anom
aly

Monday, May 16, 2011



But isn’t this expensive?

32

Monday, May 16, 2011



But isn’t this expensive?

32

Use Objects!

... heard in the ‘90s

Monday, May 16, 2011



But isn’t this expensive?

32

Use Objects!
100.000’s of objects, 

are you crazy?

... heard in the ‘90s

Monday, May 16, 2011



But isn’t this expensive?

32

Use Actors!

... heard yesterday

Monday, May 16, 2011



But isn’t this expensive?

32

Use Actors!
100.000’s of processes, 

silly you!

... heard yesterday

Monday, May 16, 2011



Effect Containment

■ Functional languages 
disallow effects

■ Many object-oriented 
styles encourage side 
effects. 

■ Actors confine effects

33

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

Monday, May 16, 2011



From C++ to Java Garbage Collection

From Java to Erlang State Confinement

34

Monday, May 16, 2011



Activity Composition

spawn

35

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

Monday, May 16, 2011



Activity Composition

link

36

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

Monday, May 16, 2011



Activity Composition

link

36

host host

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

Monday, May 16, 2011



“Let it Fail” philosophy

37

method

m
et

ho
d

method

m
ethod

data

Monday, May 16, 2011



“Let it Fail” philosophy

■ Write code with lots of assertions

37

method

m
et

ho
d

method

m
ethod

data

Monday, May 16, 2011



“Let it Fail” philosophy

■ Write code with lots of assertions

■ Let a meta-level do fault handling

37

method

m
et

ho
d

method

m
ethod

data

Monday, May 16, 2011



“Let it Fail” philosophy

■ Write code with lots of assertions

■ Let a meta-level do fault handling

■ Defensive code is a symptom of a weak 
platform (segfaults, memory leaks, ...)

37

method

m
et

ho
d

method

m
ethod

data

Monday, May 16, 2011



“Let it Fail” philosophy

■ Write code with lots of assertions

■ Let a meta-level do fault handling

■ Defensive code is a symptom of a weak 
platform (segfaults, memory leaks, ...)

Anom
aly

37

method

m
et

ho
d

method

m
ethod

data

Monday, May 16, 2011



Martin Fowler’s First Law of 
Distributed Objects Design

rpc

38

Starbucks doesn’t use 
transactions

Monday, May 16, 2011



Martin Fowler’s First Law of 
Distributed Objects Design

rpc Don’t

38

Starbucks doesn’t use 
transactions

Monday, May 16, 2011



Martin Fowler’s First Law of 
Distributed Objects Design

Steve Vinoski: RPC and its Offspring:
Convenient, Yet Fundamentally Flawed

rpc Don’t

38

Starbucks doesn’t use 
transactions

Monday, May 16, 2011



Martin Fowler’s First Law of 
Distributed Objects Design

Steve Vinoski: RPC and its Offspring:
Convenient, Yet Fundamentally FlawedAnom

aly

rpc Don’t

38

Starbucks doesn’t use 
transactions

Monday, May 16, 2011



Actor Composition

send

39

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

Monday, May 16, 2011



Actor Composition

send

spawn

39

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method

m
ethod

data

Faucet

Faucet

Faucet

method

m
et

ho
d

method
m

ethod

data

Faucet

Faucet

Faucet

Monday, May 16, 2011



Abstractions

40

Monday, May 16, 2011



Abstractions

■ Any abstraction (hiding code) is 
problematic distribute, persist, etc. 

40

Monday, May 16, 2011



Abstractions

■ Any abstraction (hiding code) is 
problematic distribute, persist, etc. 

■ You want to distribute/persist simple data 
(as in sql databases, document stores)

40

Monday, May 16, 2011



Abstractions

■ Any abstraction (hiding code) is 
problematic distribute, persist, etc. 

■ You want to distribute/persist simple data 
(as in sql databases, document stores)

■ JSON’s popularity is a testament 
to this anomaly.

40

Monday, May 16, 2011



Abstractions

■ Any abstraction (hiding code) is 
problematic distribute, persist, etc. 

■ You want to distribute/persist simple data 
(as in sql databases, document stores)

■ JSON’s popularity is a testament 
to this anomaly.

Anom
aly

40

Monday, May 16, 2011



Simple Values

41

Monday, May 16, 2011



Simple Values

■ Tuple, List, Record, Number, String

41

Monday, May 16, 2011



Simple Values

■ Tuple, List, Record, Number, String

■ Pattern matching is polymorphism for values

41

Monday, May 16, 2011



Simple Values

■ Tuple, List, Record, Number, String

■ Pattern matching is polymorphism for values

■ Erlang data stores (like Mnesia) just store 
values, not bytes or objects.

41

Monday, May 16, 2011



Simple Values

■ Tuple, List, Record, Number, String

■ Pattern matching is polymorphism for values

■ Erlang data stores (like Mnesia) just store 
values, not bytes or objects.

■ Too much of my Java programs are 
boilerplate code. 

41

Monday, May 16, 2011



Simple Values

■ Tuple, List, Record, Number, String

■ Pattern matching is polymorphism for values

■ Erlang data stores (like Mnesia) just store 
values, not bytes or objects.

■ Too much of my Java programs are 
boilerplate code. Anom

aly

41

Monday, May 16, 2011



“Object” Model Anomalies

■ Thread & Locks

■ Interfaces with Fixed API

■ Defensive Code 

■ RPC/RMI

■ Boilerplate code for persistence

42

Monday, May 16, 2011



Actor “Solutions”

■ Processes w/ state containment

■ Protocols

■ Let it Fail

■ Async Messaging

■ Send & store simple Data

43

Monday, May 16, 2011



Back in The Real World

44

Monday, May 16, 2011



45

Erlang/OTP
Open Telecommunications Platform

■ Embedded 
Distributed Systems

■ High Availability

■ In-Production 
Upgrades

Monday, May 16, 2011



OTP Actor Behaviors

■ Servers

■ Event Handlers

■ Finite State Machine

■ Supervisors

■ Networking: TCP, HTTP

46

Monday, May 16, 2011



AML

47

supervisor

worker

worker
worker

Monday, May 16, 2011



48

real problems that need 
to be solved to realize 
the potential of cloud 
computing

Monday, May 16, 2011



48

real problems that need 
to be solved to realize 
the potential of cloud 
computing

Monday, May 16, 2011



48

real problems that need 
to be solved to realize 
the potential of cloud 
computing

Monday, May 16, 2011



48

real problems that need 
to be solved to realize 
the potential of cloud 
computing

Monday, May 16, 2011



48

real problems that need 
to be solved to realize 
the potential of cloud 
computing

Monday, May 16, 2011



48

real problems that need 
to be solved to realize 
the potential of cloud 
computing

Monday, May 16, 2011



49

Monday, May 16, 2011



49

Monday, May 16, 2011



50

sync

Monday, May 16, 2011



50

sync

Async Messaging

Monday, May 16, 2011



50

sync

Async Messaging
State [Fault] Containment

Monday, May 16, 2011



50

sync

Async Messaging
State [Fault] Containment

Fault Monitoring

Monday, May 16, 2011



51

Monday, May 16, 2011



51

Yes, write-conflicts do occur. 
Deal with it!

Monday, May 16, 2011



Shared Medicine Card

52

Monday, May 16, 2011



Shared Medicine Card

52

Monday, May 16, 2011



Shared Medicine Card

53

Monday, May 16, 2011



54

Who Else Uses Erlang?

Monday, May 16, 2011



Java is still important

55

Monday, May 16, 2011



Java is still important

55

Monday, May 16, 2011



The Actor Revolution?

Smalltalk

56

Monday, May 16, 2011



The Actor Revolution?

Smalltalk

56

Internet

Monday, May 16, 2011



Fault Tolerance, Availability, QoS
Integration, Coordination

Cloud, Multi-Core

57

Erlang

Monday, May 16, 2011



Fault Tolerance, Availability, QoS
Integration, Coordination

Cloud, Multi-Core

57

Cloud

Erlang

Monday, May 16, 2011



Thank You.

58

@drkrab

Monday, May 16, 2011



Thank You.

59

Java either steps up, 
or something else will.

—Cameron Purdy

@drkrab

Monday, May 16, 2011



Thank You.

59

Java either steps up, 
or something else will.

—Cameron Purdy

@drkrab

Monday, May 16, 2011



Monday, May 16, 2011


