Monads!

Mike Had

ow

@mikehadlow

http://mikehadlow.

ologspot.com

mikehadlow@suteki.co.uk



What we’ll talk about...

* What is a Monad?

* A (very) brief history of Monads.
* Lots of C# code ©

* Thoughts on C# vs F# vs Haskell.

https://github.com/mikehadlow/Suteki.Monads



“Amplified Types”

Collections: IEnumerable<string>, IList<int>
Nullable<int>

Task<string>

They wrap and ‘enhance’ simple types.

They all require boiler plate to access their
wrapped values.



Amplified type composition

* Monads allow us to compose amplified types
naturally without boiler plate.

 To be a Monad, a Whatever<T> must implement
two methods:

Whatever<T> ToWhatever<T>(T value) // AKA unit

Whatever<B> Bind<A,B>(Whatever<A> a, Func<A, Whatever<B>> func)



Maths!

e Category theory 1940s.

+ Youneedto-understand-Category-theory-to
uhderstand-Monads:



Haskell

Haskell is a pure lazy functional programming
language.

No side effects. No guaranteed order of
execution.

Monads first introduced by Eugenio Moggi
and Philip Wadler to enable side effecting
functions.

Many applications of Monads in Haskell.



Codel



The limitations of Ling & C

* No control structures (if/else, loops)

e We can’t define a Monad in C# because we don’t
have “types of types”.

M<T>

7 \

This can’t be generic This is generic




F# Computation Expressions

type Identity<'a> = Identity of 'a

let getValue (a : Identity<'a>») = match a with Identity x -> x
let mreturn x = Identity x

let bind (a : Identity<'a>») (f : 'a -> Identity<'b>) = f
(getValue a)

type IdentityBuilder() =
member x.Bind(a, f) = bind a f
member x.Return(a) = mreturn a

let identity = new IdentityBuilder()
let result = identity {

let! a = Identity 4

let! b = Identity 3

return a + b

¥

printfn "result = %A" (getValue result)



Haskell ‘do’ notation

data Identity a = Identity a
getValue (Identity a) = a

instance Monad Identity where
return a = Identity a
(>>=) af=fS getValue a

main = putStrLn S show S getValue S do
a <- Ildentity 4
b <- Identity 3
return (a + b)



Where next?

My Monad series on Code Rant
Wikipedia Monad Page
Wes Dyer — The Marvel of Monads

Read a good Haske

— Learn you a Haskel
— Read World Haskel

| Book:
for Great Good



Questions?



