
Monads!

Mike Hadlow

@mikehadlow

http://mikehadlow.blogspot.com

mikehadlow@suteki.co.uk

What we’ll talk about…

• What is a Monad?

• A (very) brief history of Monads.

• Lots of C# code 

• Thoughts on C# vs F# vs Haskell.

https://github.com/mikehadlow/Suteki.Monads

“Amplified Types”

• Collections: IEnumerable<string>, IList<int>

• Nullable<int>

• Task<string>

• They wrap and ‘enhance’ simple types.

• They all require boiler plate to access their
wrapped values.

Amplified type composition

• Monads allow us to compose amplified types
naturally without boiler plate.

• To be a Monad, a Whatever<T> must implement
two methods:

Whatever<T> ToWhatever<T>(T value) // AKA unit

Whatever Bind<A,B>(Whatever<A> a, Func<A, Whatever> func)

Maths!

• Category theory 1940s.

• You need to understand Category theory to
understand Monads.

Haskell

• Haskell is a pure lazy functional programming
language.

• No side effects. No guaranteed order of
execution.

• Monads first introduced by Eugenio Moggi
and Philip Wadler to enable side effecting
functions.

• Many applications of Monads in Haskell.

Code!

The limitations of Linq & C#

• No control structures (if/else, loops)

• We can’t define a Monad in C# because we don’t
have “types of types”.

M<T>

This is generic This can’t be generic

F# Computation Expressions
type Identity<'a> = Identity of 'a

let getValue (a : Identity<'a>) = match a with Identity x -> x
let mreturn x = Identity x
let bind (a : Identity<'a>) (f : 'a -> Identity<'b>) = f
(getValue a)

type IdentityBuilder() =
 member x.Bind(a, f) = bind a f
 member x.Return(a) = mreturn a

let identity = new IdentityBuilder()
let result = identity {
 let! a = Identity 4
 let! b = Identity 3
 return a + b
 }

printfn "result = %A" (getValue result)

Haskell ‘do’ notation

data Identity a = Identity a

getValue (Identity a) = a

instance Monad Identity where
 return a = Identity a
 (>>=) a f = f $ getValue a

main = putStrLn $ show $ getValue $ do
 a <- Identity 4
 b <- Identity 3
 return (a + b)

Where next?

• My Monad series on Code Rant

• Wikipedia Monad Page

• Wes Dyer – The Marvel of Monads

• Read a good Haskell Book:

– Learn you a Haskell for Great Good

– Read World Haskell

Questions?

