
Tomas Petricek
PhD Student
Microsoft C# MVP

Accessing loosely structured
data from F# and C#

http://tomasp.net/blog | @tomaspetricek

http://tomasp.net/blog

A little bit about me…

 Real World Functional Programming
Co-authored by Jon Skeet

For C# developers

 Worked on F# at MSR
Internships & Contracting

Blogged about F# in 2006

 PhD Student at University of Cambridge

The Problem

The Problem

 Structure in the language
Classes with properties (C#)

Data types or classes (F#)

 Structure in the data source
Database structure, XML schema (explicit)

REST service or JSON file (implicit)

 How to solve the impedance mismatch?

What you’ll learn today

 “Design Patterns” for solving structure mismatch
What options do we have in general

 Interesting dynamic and reflection tricks
Things you can implement in C# or F#

 How F# type providers work
Future F# technology that “brings data
into the language, strongly typed”

 Expression scale
Using dynamic type or operator

 Program scale
Defining structure in the language

 Internet scale
Generate structure using type providers

Dynamic in C# and F#

 Data have some structure
Not understood by the compiler!

 Structure specified locally “as needed”
Example: Working with XML data

MyXmlElement element = GetElement();
int size = element.Attribute<int>("Size");

Demo:
Using WorldBank data in C#

Dynamic type in C#

 Operations resolved at runtime
Result is dynamic, but can be converted

class WorldBank : DynamicObject {
 public override bool TryInvokeMember(InvokeMemberBinder binder,
 object[] args, out object result) {
 result = /* member access for 'binder.Name' */
 return true;
 }
}

dynamic wb = new WorldBank();
dynamic regions = wb.Region(new { PerPage = 100 });

Dynamic in C# and F#

 Dynamic type in C#

 Dynamic operator in F#

dynamic element = GetElement();
int size = element.Size;

let element = GetElement();
let size = element?Size;

Simple database access in F#

 Operation resolved at compile-time
Result has statically known type (not dynamic)

Can be inferred from context

let getCategories() : seq<int * string> =
 [for row in db.Query?GetProducts() ->
 row?ID, row?Name]

let (?) (x:Row) (name:string) : 'R =
 x.Reader.[name] :?> 'R

Demo:
Calling database in F#

 Expression scale
Using dynamic type or operator

 Program scale
Defining structure in the language

 Internet scale
Generate structure using type providers

Structure in the language

Describe the target structure

Add hints for mapping

Coerce data to structure

Domain modeling in LINQ

 Data structure described as C# class

 Match data to the structure
Done at run-time & can fail

public partial class Books {
 [Column(Storage="_ID", DbType="Int", IsPrimaryKey=true)]
 public int ID { get; set; }
 [Column(Storage="_Title", DbType="VarChar(100)")]
 public string Title { get; set; }
}

 var q = from p in db.GetTable<Books>()
 select p.Title;

Domain modeling in F#

 Simple way to think about data
Compose data using simple constructors

 Single information (int, string, date) Primitive values

 Combines fixed number of other values Records

 Represents one of several options
Discriminated

unions

Demo:
Nicer database access

Nicer database access in F#

 Describe structure using F# types

 Match data to the structure (dynamically)
Type inferred from the context

 let load() : seq<Book> =
 let db = new DynamicDatabase(connectionString)
 db.Query?GetBooks()

type Book = { ID : int; Title : string }

Domain modeling in F#

Domain modeling in F#

 Define RSS feed structure in F#

type Title = Title of string
type Link = Link of string
type Description = Description of string

/// Item consists of title, link and description
type Item =
 Item of Title * Link * Description

/// Represents channel with title (etc.) and list of items
type Channel =
 Channel of Title * Link * Description * list<Item>

/// Represents RSS feed containing a channel
type Rss = Rss of Channel

Working with XML

 Loading RSS feed

 Key components
Domain model in the language

Library for matching data to the model

Can fail if model is not in sync

let rss = StructuralXml.Load("http://.../feed")

match rss.Root with
| Rss(Channel(Title title, _, _, items)) ->
 printfn "%s (%d items)" title items.Length

Demo:
Working with XML

 Expression scale
Using dynamic type or operator

 Program scale
Defining structure in the language

 Internet scale
Generate structure using type providers

Types

Database

Web
Services

REST
Services

XML
data

The Problem

Defining structure in the language doesn’t scale!

The Solution

Quick, stick this fish in your compiler!

Demo:
Accessing WorldBank data

What is a type provider?

 Assembly containing a special type

 Creating them is easier than it looks
Method calls replaced by expressions

…or you can generate real types

public interface ITypeProvider {
 Type[] GetTypes();

 Expression GetInvokerExpression
 (MethodBase method,
 ParameterExpression[] params);

 event EventHandler Invalidate;
}

Type provider trickery

 Gives you a new way of thinking
This wasn’t really done before…

 Delegates many questions to the provider
Different views? Different versions?

What if data source is not available?

 F# is a great playground
Object-oriented concepts help

More information with units of measure

Demo:
Accessing Freebase data

Summary

Building a bridge between two structures

Dynamic type
or operator

• Explicit

• Syntax in
language

• Local scale
(expression)

Domain model

• Explicit

• Classes or
data types

• Program or
library scale

Type providers

• Implicit

• Generated
object types

• Web scale

Discussion

Questions & Answers?

 F# training at SkillsMatter
Functional Programming with .NET (27-28 October)

Real-World F# Programming (15-16 December)

 Contact
http://tomasp.net | @tomaspetricek | tomas@tomasp.net

http://tomasp.net/
mailto:tomas@tomasp.net

BONUS

World Bank provider details

 At runtime countries & indicators are strings
For example “GBR” or “GC.DOD.TOTL.GD.ZS”

Members translated to runtime functions

type Runtime =

 static member GetValuesByCountryAndIndicator

 (country:string, indicator:string) : seq<int * float> =

 seq { for (k, v) in WorldBank.GetData [country; indicator] do

 if not (String.IsNullOrEmpty v) then

 yield int k, float v }

 static member GetCountriesByRegion(code:string) : seq<string> =

 seq { for (key, _) in WorldBank.GetCountries(code) -> key }

Calling PHP from C#

 Dynamically typed PHP object

 Required structure specified as a C# interface

class SampleObj {
 function Add($a, $b) { return $a + $b; }
}

[DuckType]
public interface ISampleObj {
 int Add(int i1, int i2);
}

ISampleObj so = ctx.New<ISampleObj>("SampleObj");
int res = so.Add(18, 26);

