
NewSQL Database for

New Real-time Applications

PhD Peter Idestam-Almquist

Starcounter AB

New real time applications

2

Millions of simultaneous online users.

High degree of concurrency.

Interactive applications (95% reads; 5% writes).

Starcounter database

We claim you can run the database of a

large webshop like amazon.com on a single

off-the-shelf server using Starcounter.

Old products:

slow, complex, expensive.

The new generation:

easy, fast, game changing.

3

Outline

Positioning

Consistency

Performance

Code examples

4

Database landscape

5

Matthew Aslett, The 451 Group

NoSQL and NewSQL

NoSQL:
New breed of non-relational

database products;

Rejections of fixed table

schema and join operations;

Designed to meet scalability

requirements of distributed

architectures;

And/or schema-less data

management requirements.

6

NewSQL:
New breed of relational

database products;

Retain SQL and ACID;

Designed to meet scalability

requirements of distributed

architectures;

Or improve performance so

horizontal scalability is no

longer a necessity.

 Matthew Aslett, The 451 Group

Data management challenge

You have:

big data volumes,

many simultaneous online users (updating

data).

You want:

high performance (throughput and latency),

consistent data.

7

Your alternatives

8

Outline

Positioning

Consistency

Performance

Code examples

9

ACID transactions

ACID transactions guarantee consistent data:

Atomicity - either entire transaction or nothing;

Consistency - valid state before and after

transaction;

Isolation - no transaction interfers with another

transaction;

Durability - committed transactions will remain after

crash or power loss.

10

Isolation levels

Different isolation levels to trade off between

performance and consistency:

Read uncommitted - dirty reads;

Read committed - non-repeatable reads;

Repeatable reads - phantom reads;

Serializable (required for ACID)

- as executing transactions sequentially;

- often relaxed to snapshot isolation.

11

Scale out and global consistency

12

Throughput

Database nodes

Distributed transactions (two-phase commits) gives (high degree
of) global consistency, but do not scale.

Scale out and local consistency

13

Horizontal scaling (shared-nothing) scales linearly, but gives
no global consistency (only local consistency).

Throughput

Database nodes

CAP theorem (Brewer)

14

A distributed system can satisfy two but not

three out of:

Consistency - all nodes see the same data at the

same time;

Availability - every request recieves a response

whether it succeeded or failed;

Partition tolerance - operates despite of message

loss or failure of part of the system.

Our conclusion

15

You cannot achieve both high performance and

consistency by scaling-out.

To achieve both high performance and

consistency you should:

Scale-in - execute all transactions in RAM

(performance) on the same computer (consistency);

Scale-up - get a powerful multi-core server with a lot

of RAM (performance).

Do I need ACID?

16

When dealing with business critical data like

stock quantities or money.

For multi-user applications transactional

conflicts will occur and need to be managed by:

database (DBMS),

application (hard for developers),

end user: "Sorry we have just sold you a product we

already have sold to someone else".

Outline

Positioning

Consistency

Performance

Code examples

17

Application performance

18

For the performance of an application the

interaction between the application and the

database is crucial.

Our invention: VMDBMS,

which integrates the application runtime

(virtual machine - VM) and the database

management system (DBMS).

Traditional DBMS

Data is copied back and forth between the

application (heap) and the database.

Business objects store temporary local copies of the

data.

RAM
DBMS cache

Object heap

Application
code

Application
code

19

Our invention - VMDBMS

Data is not moved between the database and the

application (heap).

Data resides only in the database, and the business

objects have no local copies of the data.

RAM
DBMS

Object heap

Application
code

Application
code

20

Starcounter read performance (SQL)

21

Transactions per second

CPU cores
2 4 6 8 10 12

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000

Starcounter read performance (SQL)

22

500,000 read-only ACID transactions per

second and core for SQL queries.

Scales almost linearly on the number of cores.

Int32 productId;

Int32 quantity;

...

Db.Transaction(delegate

{

 Product product =

 Db.SQL("select p from Product p where p.Id = ?",

 productId).First;

 quantity = product.Quantity;

})

Starcounter read performance (ref)

23

You can traverse four millions of nodes in an

object graph in a second (using one core).

Node cursor;

...

Db.Transaction(delegate

{

 while (cursor.Next != null)

 {

 cursor = cursor.Next;

 }

})

Starcounter write performance

24

Transactions per second

CPU cores
1 2 3 4 5 6

100,000

200,000

300,000

400,000

500,000

600,000

Starcounter write performance

25

100,000 read-write ACID transactions per

second on one core for SQL queries.

Do not scale on the number of cores.

Max 250,000 ACID transactions per second.
Int32 productId;

...

Db.Transaction(delegate

{

 Product product =

 Db.SQL("select p from Product p where p.Id = ?",

 productId).First;

 product.Quantity = product.Quantity - 1;

})

A very large webshop

26

1 billions of orders per year.

10 billions of write transactions (400/s).

200 billions of read transactions (8,000/s).

54 GB order data per year.

Intel Xeon, 32 cores, 1 TB RAM, 50000 USD.

Outline

Positioning

Consistency

Performance

Code examples

27

Starcounter .NET object API

Database schema (”create table”): class definitions inheriting

Starcounter.Entity.

Create object (”insert”): native ”new” operator.

Modify object (”update”): native assignment operator (”=”).

Delete object (”delete”): use object method Delete().

Query objects (”select”): SQL(”select ...”).

28

Database schema

using Starcounter;

public class Employee : Entity

{

 public string Name;

 public Nullable<DateTime> HireDate;

 public decimal Salary;

 public Department Department;

 public Employee Manager;

 ...

}

29

Create object

public class Employee : Entity

{

 ...

 public Employee() { }

}

...

Employee e = new Employee();

30

Modify object

...

Department d = new Department();

...

Employee e = new Employee();

e.Name = ”John”;

e.HireDate = null;

e.Salary = 20000;

e.Department = d;

31

Delete object

...

Employee e = new Employee();

e.Name = ”John”;

e.HireDate = null;

e.Salary = 20000;

e.Department = d;

e.Delete();

32

Starcounter SQL

Starcounter SQL follows SQL92 standard

Object references:
SELECT e FROM Employee e

Path expressions:
SELECT e.Name, e.Department.Name

FROM Employee e

Compare to:
SELECT e.Name, d.Name

FROM Employee e

JOIN Department d

ON e.DepartmentId = d.Id

33

SQL in code

string query = ”SELECT e FROM Employee e”;

foreach (Employee emp in Db.SQL(query))

 emp.PrintCV();

string query = ”SELECT e FROM Employee e

 WHERE e.FirstName = ?”;

Employee emp =

 Db.SQL(query, ”John”).First;

emp.PrintCV();

34

One-to-many relations

public class Employee : Entity

{

 public Employee Manager;

 public IEnumerable Staff

 {

 get {

 string query = ”SELECT e FROM

 Employee e WHERE e.Manager = ?”;

 return Db.SQL(query, this);

 }

 }

}

35

Transactions

Db.Transaction(delegate()

{

 string query = ”SELECT e FROM Employee

 e WHERE e.Name = ?”;

 Employee emp =

 Db.SQL(query, ”John”).First;

 if (emp != null)

 emp.Name = ”Bill”;

});

36

Starcounter database

Transactional database (OLTP).

ACID compliant.

High performance (500,000 TPS per core).

Robust (previous versions used in production for 5 years).

Reliable (replication and full checkpoint recovery).

In-memory (transactions secured on disk).

SQL query support.

Native (.NET) object API.

New invention: VMDBMS.

37

Questions ?

38

More info on www.starcounter.com.

http://www.starcounter.com/

