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What is Datomic?

• A new kind of database

• Bringing data power into the application

• A sound model of information, with time

• Enabled by architectural advances



Why Datomic?

• Architecture

• Data Model
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The Database, Deconstructed
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Designed for the Cloud

• Ephemeral instances, unreliable disks

• Redundancy in storage service

• Leverages reliable storage services 

• e.g. DynamoDB



 Elastic Scaling

• More peers, more power

• Fewer peers, less power, lower cost

• Demand-driven

• No configuration



Get Your Own Brain

• Query, communication and memory engine

• Goes into your app, making it a peer

• The db is effectively local

• Ad hoc, long running queries - ok



Logic

• Declarative search and business logic

• The query language is Datalog

• Simple rules and data patterns

• Joins are implicit, meaning is evident

• db and non-db sources



Perception

• Obtain a queue of transactions 

• not just your own

• Query transactions for filtering/triggering



Consistency

• ACID transactions add new facts

• Database presented to app as a value

• Data in storage service is immutable



Programmability

• Transactions/Rules/Queries/Results are data

• Extensible types, predicates, etc

• Queries can invoke your code



A Database of Facts

• A single storage construct, the datom

• Entity/Attribute/Value/Transaction

• Attribute definition is the only 'schema'



Adaptability

• Sparse, irregular, hierarchical data

• Single and multi-valued attributes

• No structural rigidity



 Time Built-in

• Every datom retains its transaction

• Transactions are totally ordered

• Transactions are first-class entities

• Get the db as-of, or since, a point in time



Implementation
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State
• Immutable, expanding value

• Must be organized to support query

• Sorted set of facts

• Maintaining sort live in storage - bad

• BigTable - mem + storage merge

• occasional merge into storage

• persistent trees



Memory Index
• New persistent sorted set

• Large internal nodes

• Pluggable comparators

• 2 sorts always maintained

• EAVT, AEVT

• plus AVET, VAET



Storage
• Log of tx asserts/retracts (in tree)

• Various covering indexes (trees)

• Storage requirements

• Data segment values (K->V)

• atoms (consistent read)

• pods (conditional put)
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What’s in a DB Value?
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Process

• Assert/retract can’t express transformation

• Transaction function: 

(f db & args) -> tx-data

• tx-data: assert|retract|(tx-fn args...)

• Expand/splice until all assert/retracts



Process Expansion
++ ++foo- -

baz++ ++bar- -

...+++ -++ +++- -



Transactor

• Accepts transactions

• Expands, applies, logs, broadcasts

• Periodic indexing, in background

• Indexing creates garbage

• Storage GC



Transactor 
Implementation

• HornetQ for transaction communication

• Extensive internal pipelining - j.u.c. queues

• Async message decompression

• transaction expansion/application

• encoding for, communication with storage

• Java interop to storage APIs



Indexing

• Extensive use of laziness

• Parallel processing

• Parallel I/O

• Async, rejoins via queue



Declarative 
Programming

• Embedded Datalog

• Takes data sources and rule sets as args

• Extended to work with scalars/collections

• Expression clauses call your code



Datalog 
Implementation

• Data driven, in and out

• Query/Subquery Recursive (QSQR)

• Dynamic, set oriented

• DB joins leverage indexes

• Expressions use Clojure compiler

• caching of transforms at all stages



Over Here
• Peers directly access storage service

• Have own query engine

• Have live mem index and merging

• Two-tier cache

• Segments (on/off heap)

• Datoms w/object values (on heap)



Peer Implementation
• HornetQ for transaction communication

• Google Guava caches

• Java APIs for storage

• Entities are like multimaps

• key -> value(s)

• reverse attrs



Consistency and Scale
• Process/writes go through transactor

• traditional server scaling/availability

• Immutability supports consistent reads

• without transactions

• scale reads turning knobs on storage

• Query scales with peers

• dynamic e.g. auto-scaling



Testing

• test.generative was born here

• Functional tests

• Simulation-based testing



Simplicity is Agility
• Key protocols extremely small (< 7 fns)

• Memory, embedded SQL, remote SQL, 
Infinispan, DynamoDB

• Move from our own dynamo cluster to 
DynamoDB:

• 2 weeks

• Support PostgreSQL, Infinispan

• 1 day each



Leverage
✓Read/print data

✓Embedded language

✓Runtime compilation

✓Extend standard interfaces/protocols

✓Interop

✓State model - extended



Summary
• Clojure was made for this kind of app

• Fast enough at all levels

• Most key subsystems < 1000 lines

• A ton of concurrency, no sweat

• Leverage interop - Hornetq, Guava etc

• Startup time could be better

• Datomic is Simple


