
Writing Datomic in Clojure
Rich Hickey

Datomic, Clojure

Overview

• What is Datomic?

• Architecture

• Implementation - Clojure Applied

• Summary

What is Datomic?

• A new kind of database

• Bringing data power into the application

• A sound model of information, with time

• Enabled by architectural advances

Why Datomic?

• Architecture

• Data Model

Architectures

Queries
Transactions
Consistency
Storage

Server

AppAppApp

App

App

App AppApp

Client-Server

Server

AppAppApp

App

App

App AppApp

Client-Server

Architectures

Queries
Transactions
Consistency
Storage

ServerServer

AppAppApp

App

App

App AppApp

Clustered Client-Server

ServerServer

AppAppApp

App

App

App AppApp

Clustered Client-Server

Architectures

Queries
Transactions
Consistency
Storage

AppAppApp

App

App

App AppApp

ServerServerServer

Sharded Client-Server

AppAppApp

App

App

App AppApp

ServerServerServer

Sharded Client-Server

Architectures

Queries
Transactions
Consistency
Storage

AppAppApp

App

App

App AppApp

ServerServerServer

Sharded Client-Server

AppAppApp

App

App

App AppApp

ServerServerServer

Sharded Client-Server
Queries
Transactions
Consistency
Storage

Architectures

Queries
Transactions
Consistency
Storage

AppAppApp

App

App

App AppApp

ServerServerServer

K/V Store

AppAppApp

App

App

App AppApp

ServerServerServer

K/V Store
Queries
Transactions
Consistency
Storage

Architectures

Queries
Transactions
Consistency
Storage

AppAppApp

App

App

App AppApp

ServerServerServer

K/V Store

AppAppApp

App

App

App AppApp

ServerServerServer

K/V Store
Queries
Transactions
Consistency
Storage

Queries
Transactions
Consistency
Storage

Architectures

Queries
Transactions
Consistency
Storage

AppAppApp

App

App

App AppApp

ServiceStorageDistributed

K/V Store

AppAppApp

App

App

App AppApp

ServiceStorageDistributed

K/V Store
Queries
Transactions
Consistency
Storage

Queries
Transactions
Consistency
Storage

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

Datomic Architecture

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

Datomic Architecture

Queries
Transactions
Consistency
Storage

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

Datomic Architecture

Queries
Transactions
Consistency
Storage

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

Datomic Architecture

Transactor

Queries
Transactions
Consistency
Storage

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

Datomic Architecture

Transactor

Queries
Transactions
Consistency
Storage

Queries
Transactions
Consistency
Storage

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

Datomic Architecture

Transactor

Queries
Transactions
Consistency
Storage

Queries
Transactions
Consistency
Storage

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

Datomic Architecture

Transactor

Queries
Transactions
Consistency
Storage

Queries
Transactions
Consistency
Storage

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

Datomic Architecture

Transactor

Queries
Transactions
Consistency
Storage

Queries
Transactions
Consistency
Storage

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

AppApp

ServiceStorageDistributed

App

App

App
AppAppApp

Datomic Architecture

Transactor

Queries
Transactions
Consistency
Storage

Queries
Transactions
Consistency
Storage

The Database, Deconstructed

Traditional DB Datomic

Storage Service

App Process
D Peer Lib

b,c,ea,d,e a,b,d

D Transactor

Indexing Trans-
actions

Query

Cache

App Data

Data

Data
segments

Live
Index

Data
Segments

Data Segments

Server

Indexing

Trans-
actions

Query

App Process

I/O

App

Strings
DDL + DML

Result Sets

Storage

cache

Designed for the Cloud

• Ephemeral instances, unreliable disks

• Redundancy in storage service

• Leverages reliable storage services

• e.g. DynamoDB

 Elastic Scaling

• More peers, more power

• Fewer peers, less power, lower cost

• Demand-driven

• No configuration

Get Your Own Brain

• Query, communication and memory engine

• Goes into your app, making it a peer

• The db is effectively local

• Ad hoc, long running queries - ok

Logic

• Declarative search and business logic

• The query language is Datalog

• Simple rules and data patterns

• Joins are implicit, meaning is evident

• db and non-db sources

Perception

• Obtain a queue of transactions

• not just your own

• Query transactions for filtering/triggering

Consistency

• ACID transactions add new facts

• Database presented to app as a value

• Data in storage service is immutable

Programmability

• Transactions/Rules/Queries/Results are data

• Extensible types, predicates, etc

• Queries can invoke your code

A Database of Facts

• A single storage construct, the datom

• Entity/Attribute/Value/Transaction

• Attribute definition is the only 'schema'

Adaptability

• Sparse, irregular, hierarchical data

• Single and multi-valued attributes

• No structural rigidity

 Time Built-in

• Every datom retains its transaction

• Transactions are totally ordered

• Transactions are first-class entities

• Get the db as-of, or since, a point in time

Implementation

Architecture
App Process

Peer Lib

Query

Cache

App

Live
IndexComm

Transactor
AMI

Indexing Trans-
actions

Data Segments

Storage Service (Dynamo DB)

SSDSSD

Data Segments
Redundant

segment storage

State
• Immutable, expanding value

• Must be organized to support query

• Sorted set of facts

• Maintaining sort live in storage - bad

• BigTable - mem + storage merge

• occasional merge into storage

• persistent trees

Memory Index
• New persistent sorted set

• Large internal nodes

• Pluggable comparators

• 2 sorts always maintained

• EAVT, AEVT

• plus AVET, VAET

Storage
• Log of tx asserts/retracts (in tree)

• Various covering indexes (trees)

• Storage requirements

• Data segment values (K->V)

• atoms (consistent read)

• pods (conditional put)

Index Storage

Sorted
Datoms

Index Root
of key->dir

T
42

VeAETAEVT AVET LuceneEAVT

Storage
Service

dirs

segs

What’s in a DB Value?

EAVT

t
VeAET
AEVT

db atom

Lucene index

history

live Lucene

sinceT
asOfT

key->idids
id->keykeys

index
being-indexed

db value
live Storage

Hierarchical
Cache

Roots

Memory index
(live window)

Storage-backed index

Process

• Assert/retract can’t express transformation

• Transaction function:

(f db & args) -> tx-data

• tx-data: assert|retract|(tx-fn args...)

• Expand/splice until all assert/retracts

Process Expansion
++ ++foo- -

baz++ ++bar- -

...+++ -++ +++- -

Transactor

• Accepts transactions

• Expands, applies, logs, broadcasts

• Periodic indexing, in background

• Indexing creates garbage

• Storage GC

Transactor
Implementation

• HornetQ for transaction communication

• Extensive internal pipelining - j.u.c. queues

• Async message decompression

• transaction expansion/application

• encoding for, communication with storage

• Java interop to storage APIs

Indexing

• Extensive use of laziness

• Parallel processing

• Parallel I/O

• Async, rejoins via queue

Declarative
Programming

• Embedded Datalog

• Takes data sources and rule sets as args

• Extended to work with scalars/collections

• Expression clauses call your code

Datalog
Implementation

• Data driven, in and out

• Query/Subquery Recursive (QSQR)

• Dynamic, set oriented

• DB joins leverage indexes

• Expressions use Clojure compiler

• caching of transforms at all stages

Over Here
• Peers directly access storage service

• Have own query engine

• Have live mem index and merging

• Two-tier cache

• Segments (on/off heap)

• Datoms w/object values (on heap)

Peer Implementation
• HornetQ for transaction communication

• Google Guava caches

• Java APIs for storage

• Entities are like multimaps

• key -> value(s)

• reverse attrs

Consistency and Scale
• Process/writes go through transactor

• traditional server scaling/availability

• Immutability supports consistent reads

• without transactions

• scale reads turning knobs on storage

• Query scales with peers

• dynamic e.g. auto-scaling

Testing

• test.generative was born here

• Functional tests

• Simulation-based testing

Simplicity is Agility
• Key protocols extremely small (< 7 fns)

• Memory, embedded SQL, remote SQL,
Infinispan, DynamoDB

• Move from our own dynamo cluster to
DynamoDB:

• 2 weeks

• Support PostgreSQL, Infinispan

• 1 day each

Leverage
✓Read/print data

✓Embedded language

✓Runtime compilation

✓Extend standard interfaces/protocols

✓Interop

✓State model - extended

Summary
• Clojure was made for this kind of app

• Fast enough at all levels

• Most key subsystems < 1000 lines

• A ton of concurrency, no sweat

• Leverage interop - Hornetq, Guava etc

• Startup time could be better

• Datomic is Simple

