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Wix Initial Architecture 

• Tomcat, Hibernate, Custom web framework 

– Everything generated from HBM files 

– Built for fast development 

– Statefull login (tomcat session), EHCache, File uploads 

– Not considering performance, scalability, fast feature rollout, testing 

– It reflected the fact that we didn’t really know what is our business 

– Yoav A. - “it is great for a first stage start-up, but you will have to replace it 
within 2 years” 

– Nadav A, after two years - “you were right, however, you failed to mention 
how hard it’s gonna be” 



Wix Initial Architecture 

What we have learned  

• Don’t worry about ‘building it right from the start’ – you won’t 

• You are going to replace stuff you are building in the initial stages of a 
startup or any project 

• Be ready to do it 

• Get it up to customers as fast as you can. Get feedback. Evolve. 

• Our mistake was not planning for gradual re-write 

• Build for gradual re-write as you learn the problems and find the right 
solutions 



Two years passed 

 

• We learned what our business is – building websites 

• We started selling premium websites 



Two years passed 

• Our architecture evolved 

– We added a separate Billing segment 

– We moved static file storage and HTTP serving to a  
separate instance 

 

• But we started seeing problems 

– Updates to our server imposed complete wix downtime 

– Our static storage reached 500 GByte of small files, the  
limit of Bash scripts 

– The codebase became large and entangled. Feature rollout became harder 
over time, requiring longer and longer manual regression 

• Strange full-table scans queries generated by Hibernate, which we still have no idea 
what code is responsible for… 

– Statefull user sessions required a lot of memory and a statefull load balancer 
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Motivations for CI/CD/TDD 

• We were working traditional waterfall 

• With fear of change  

– It is working, why touch it? 

– Uploading a release means downtime and bugs! 

• With low product quality 

– Want to risk fixing this bug? Who knows what may break? 

• With slow development velocity 

– From “I have a great new product idea” to “it is working” takes too match time 

• With tradition enterprise development lifecycle 

– Three months of a “VERSION” development and QA 

– Six months of crisis mode cleaning bugs and stabilizing system 



Wix’s CI/CD/TDD model 

• Abandon “VERSION” paradigm – move feature centric life 

• Make small and frequent release as soon as possible  

– Today we release about 10 times a day, gaining velocity 

• Empower the developer 

– The developer is responsible from product idea to 10,000 active users 

– Remove every obstacle in the developer’s path 

– Big cultural change from waterfall – affects the whole company 

• Automate everything – CI/CD/TDD 

– CI – Continuous Integration 

– CD – Continuous Delivery / Deployment 

– TDD – Test Driven Development 

• Measure Everything 

– A/B test every new feature 

– Monitor real KPIs (business, not CPU) 

 



Test Driven Development 

• TDD workflow 

– Definition: First write a test-case, then write the code for the test to pass and 
then refactor the code 

– My Definition: write the code and tests at the same time. During 
development, run only tests! (don’t write Main(), deploy to app server, etc). 

• Code vs Testing Code 

– Developers invest in refactoring the production code to have high quality. 

– But the test code is just that something we ^$@&*@# ~*@ must live with. 

– Test code is as important as production code. We invest in modeling it, 
refactoring it and building the tools to make it clear and maintainable. 



Test Driven Development 

• What people think is the impact on development 

– TDD slows down development 

– With TDD we write more code (product + test code).  

• Actual impact on development 

– We development faster 

– Removes fear of change 

– Easier to enter some-else’s project 

– Do we really need QA? (Yes, they code tests) 

– 10-30% slower, 45-90% less bugs 

– Considerably faster time to fix bugs 

• Current Test Count (U-Tests + IT-Tests) – over 6500 



TDD @ Wix 

• Server side – Java, C - Automated U-Tests and IT-Tests 

– U-Tests – mockito, Hamcrest, JUnit, Wix enhancements (logging, builders, etc). 

– IT-Tests – full embedded mode support, including embedded MySQl, 
embedded Jetty, embedded MongoDB, etc. 

– All tests run on every code check-in 

• Client side – JS - Automated U-Tests and working on Automating GUI-Tests 

– U-Tests – Jasmine, Testacle – distributed parallel U-Test runner integrated into 
IDE and Maven 

– GUI Tests 

• Working on Selenium, with embedded RC and external grid 

• Still a large manual effort 

– U-Tests run on every code check-in 

– Lint (custom profile) run on every code check-in 

 

 



TDD @ Wix 

• U-Tests 

– Test the business logic of 
the application 

– No Dependencies 

• IT-Tests 

– Test the integration with 
different libraries 
(inbound or outbound) 

– Tests if we use the library 
correctly 

• Learning Test 

– Tests used to learn how to 
use a certain library 

  
Business 

Logic 
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TDD @ Wix 

• U-Test example (as complex as it gets) 

– Setup: Custom Junit Runner and mocking 

– White Box test 

 
@Test  

public void testRenderingNoDebug() {  

    when(scriptSource.getScriptsList(DebugMode.nodebug))  

        .thenReturn(ImmutableMultimap.<String, Url>builder()  

             .putAll("core", new Url(CORE1_JS), new Url(CORE2_JS))  

             .putAll("main", new Url(MAIN1_JS), new Url(MAIN2_JS))  

             .build());  

    when(scriptSource.getScriptsList(DebugMode.nodebug))  

        .thenReturn(ImmutableMultimap.<String, Url>builder()  

             .putAll("core", new Url(CORE3_JS))  

             .putAll("main", new Url(MAIN3_JS))  

             .build());  

 

    Renderable renderable = scriptsRenderer.renderScripts(DebugMode.nodebug);  

    assertThat(renderable.toString(), allOf(  

                not(containsString("<script type=\"text/javascript\" src=\"" +  

                    CORE1_JS + "\"></script>")),  

                not(containsString("<script type=\"text/javascript\" src=\"" +  

                    CORE2_JS + "\"></script>")),  

                not(containsString("<script type=\"text/javascript\" src=\"" +  

                    MAIN1_JS + "\"></script>")),  

                not(containsString("<script type=\"text/javascript\" src=\"" +  

                    MAIN2_JS + "\"></script>")),  

                containsString("<script type=\"text/javascript\" src=\"" +  

                    MAIN3_JS + "\"></script>"),  

                containsString("<script type=\"text/javascript\" src=\"" +  

                    MAIN3_JS + "\"></script>"),  

                not(containsString("${")))); 

}  



TDD @ Wix 

• IT-Test example (as complex as it gets) 

– Setup: embedded MySQL, migrations, embedded Jetty, testDao 

– Black Box test - Test over HTTP (Json RPC in this case) to DB. 
@Test  

public void renderWebHtmlUsingRpcPositive() throws IOException {  

    Document document = buildSampleDocument();  

    testWebSiteDao.saveOrUpdate(defaultSite_1()  

                .withDocumentJson(siteDigester.serializeDocument(document))  

                .withWixDataJson("{}")  

                .build());  

 

    Route route1 = defaultRoute("www", "/") 

                .withIdInApp(siteId_1.getId()) 

                .withApplicationType(ApplicationType.Flash) 

                .build(); 

    Route route2 = defaultRoute("m", "/") 

                .withIdInApp(siteId_2.getId()) 

                .withApplicationType(ApplicationType.HtmlMobile) 

                .build(); 

 

    RenderResponse render = remoteWebHtmlRemoteRenderer.render(defaultRequest() 

                .withMetaSite(defaultMetaSite(metaSiteId, route1, route2)) 

                .withRoute(route1) 

                .withPath("/") 

                .build()); 

 

    assertThat(render.getHeadContent().render(), containsString(FAVICON_JPG)); 

        assertThat(render.getBodyContent().render(), allOf(containsString(PAGE_DATA_ID_1), 

                containsString(PAGE_1), 

                containsString(PAGE_2))); 

} 



Guidelines for successful TDD 

• Tests should run on project checkout to a random computer.  

– No dependencies on anything installed 

• Tests that cannot be debugged on a developer machine will never 
consistently run for any period of time 

• Tests should run fast 

• Tests have to be readable 

– They are the project spec 

• Fixture is evil! 

 



CI/CD @ Wix – Release Process 

• During development (on developers machine) 

– Maven (Snapshot), one Trunk 

– c 

• On code check-in 

– TeamCity, Maven (Snapshot), Artifactory 

– c 

• Mark as RC 

– Lifecycle, TeamCity, Maven (release), Artifactory 

– c  

• Staging (when needed) 

– Chix, Chef, Sous-Chef, Artifactory, New Relic, App-Info 

– c 

• Deploy to production 

– Chef, Artifactory, Sous-Chef, New Relic, App-Info 

– c 

Compile Unit Tests Embedded ITs 

Compile Unit Tests 

Deploy - Production Self Tests Monitor 

Embedded ITs Dev Repo 

Compile Unit Tests Embedded ITs RC Repo 

Deploy - Staging Self Tests Monitor QA Tests 

A/B Test 



How does it works – CD Practices 

• Backwards and Forwards compatible 

– Each component has to function with latest, next or prior version of other 
components (including DBs) 

• Gradual Deployment & Self-Test 

– Deploy new version to one server and perform self-test. If it passes, continue 
deployment to other servers. 

• Feature Toggle 

– Open a new feature by feature toggle configuration 

• A/B Testing 

– Open a new feature to a percent of your users. Is it better? 

• Exception Classification 

– What exceptions are real errors? What do you care about? 

• Small Development Iterations 

– Release frequent – small pieces of functionality 



Gradual Deployment 

• Assume two components 

 

 

• We shutdown one and install on it the  
new version. It is not active yet 

 

• Do self test 

• Activate the new server it is passes self test 

 

 

• Continue deploying the other servers,  
a few at a time, checking each one with  
self test 
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Backward and Forward compatible 

• Assume two components 

 

 

• We release a new version of one 

 

 

 

 

• Now Rollback the other… 
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Feature Toggle 

• Everyone develops on the Trunk 

– It’s the developer responsibility not to break anything (requires TDD, CI) 

• Every piece of code can get to production at anytime  

– Release of something done by another developer 

• What about  

– Incomplete features? 

– Not tested / validated features? 

• Feature Toggle to the rescue 

– Unused new code can go to production – no harm done 

– Used new code goes with a guard – use new or old code by feature toggle 

• Feature toggle by  

– Static configuration on the server 

– User – open a feature to selected users 

– Any other rule you need 

 

 



A/B Test 

• When we open a new feature 

– It may be production with Feature Toggle 

– It may be a new deployment 

• We open the new feature to a certain % of users 

– Define KPIs to check if the new feature is better or worse  

– If it is better, we keep it 

– If worse, we check why and improve 

– If we find flaws, the impact is just for % of our users (kind of Feature Toggle) 

• An interesting site effect on product 

• How many times did you have the conversion “what is better”? 

– Put the menu on top / on the side 

– If checkout getting inconsistent – do an error or do a best effort (e.g. 
Amazon)? 

• Well, how about building both and A/B Testing? 



Exception Classification 

• Every application has errors. 

– Some are important, some not so 

• Login failure vs “table not found in DB” 

• We classify exception by  

– Business – errors caused by user behavior 

– System – errors preventing our service 

– Level – Fatal, Error, Warning or Recoverable 

• The errors are tracked on app-info and monitoring 



Small Development Iterations 

• No Waterfall 

• No Scrum 

• No Iterations 

• No large documents 

• Build something small 

• When it is ready, deploy it 

– Measure it 

– Then fix it 

– Again 

– And again, until Dev, Product and Customers are happy 

• Then start changing it 

– Again, as a small change 



Changes the company DNA 

• Changes Product 

– No longer 2 months specification cycles 

– Instead, ask what is the minimal useful feature set that we can open? 

– How can we deploy it within a week? 

– Work closely with developers to answer those questions 

– Think small, fast, agile and about validating ideas with real users 

– Decision making using A/B Testing and measurements 

• Changes Operations 

– Don’t do deployments – it’s the developer responsibility 

– DevOps – mixes developers and system responsibilities 

– Responsible for Wix Runtime env 

– Can initiate rollback 

– Build the CD infra, guide developers, DRP, attacks, etc. 



Changes the company DNA 

• Changes Developers 

– Responsible for building a product / feature 

– Responsible from a product idea (with product) to development, testing (with 
QA developers) to deployment (with operations) to rollback (with monitoring 
and BI) 

– DevOps – work closely with operations to enable deployment and rollback, 
fully automated 

– Work closely with product to find the best simple minimal product to build 
and validate 

• Changes Architects 

– No longer making all the designs 

– Instead, guides developers, works with system and dev, governs important 
designs (if we make a mistake, we can probably fix it fast) 



Where are we today? 

• We have re-written our flash editor product as an HTML 5 editor 

– In just 4 months 

• We are introducing Wix 3rd party applications (developers API) 

– In just 6 weeks 

• We are easily replacing significant parts of our infrastructure 

• And we are doing 9.5 releases a day! 

– Number of Releases per day 



Tools - App-info 

• Application Dashboard 

– Application Information, usage and errors on every server 



Tools - App-info 

• Self-Test –  

– Can my application function? 



Tools - New Relic 

• External Monitoring of applications 



Tools - Chix 

• Staging Environments manager 

– Self-service deployment to staging environments 



Tools - Lifecycle 

• Centralized Dashboard 

– Release RC, GA, Production (with Artifactory, TeamCity) 

– Build status, production status (with chef, sous-chef) 




