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Who’s Tobias? 

§  Started out as a Java 
consultant 

§ Worked 4 years with mobile 
services in MENA and APAC 

§  Currently living in Stockholm 

§  Currently working for 
SpringSource as a Sales 
Engineer in Northern Europe 
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Agenda 

§  Background 
§  Implications for your application 
§  The evolving runtime environment 
§  Spring Framework 
§ Moving your application to Cloud Foundry 
§  Architectural Principles of the cloud 

Auto-Reconfiguration: Getting Started

• Deploy Spring apps to the cloud without changing a 
single line of code

• Cloud Foundry automatically re-configures bean 
definitions to bind to cloud services

• Works with spring and grails frameworks
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Thursday, October 27, 2011



4 It’s a “New” World 
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Mobile first, mobile only??? 
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web-app & 
browser 

users & 
services 

User Centric 
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what happened  

last month? 

what’s happening  

now? 

Real-time, contextual, social 
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Solving Google style type problems 
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SSD 

Latency Sensitive 

“memory is the new disk” 
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Frequent deployments 
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So, what does this all mean for your 
applications? 
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Real life developing a web product Real life developing a web product

9
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Client 

Server 

View 
Generation 

Controllers 

Service Layer 

Repositories Channels RDBMS 
CRUD 

Application 

Server 

Browser 
Browser-based 

HTML Rendering 

(progressive 

enhancement) 

HTML HTTP 

Anatomy of a web app 
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Client 

PaaS 

Browser app or 

embedded in native 

JSON HTTP & websockets 

HTML5 & JS Engine 

Controllers DOM 

Client-side model 

events 
& 

 notifications 

web stg 

Service Service Service 
business /  

domain services 

Service Service Service platform services, 

web APIs 
SQL NoSQL Other 

Anatomy of a next-gen app 
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Data isn’t just relational 

§  Relational database stores CRUD data, seeing huge rise in CRAP 
data 
• Created, Replicated, Appended, Processed 

§ Other store types: 
• Document [MongoDB] 
•  Key-value [Redis] 

• Column-family [Cassandra] 

• Graph database [Neo4j] 
•  Blob stores 

§  Trend is to supplement RDB with non-relational stores 
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New Era Requires a Shift: Elasticity from Apps to Data 

Develop using modern frameworks: 
agile apps decoupled from middleware 

Access app data through elastic data 
fabric and/or in-memory SQL: 

maximize data scalability 

Use cloud-friendly messaging protocols: 
enable flexible app integration 

Leverage runtime container optimized 
for virtualization: provision in seconds 

Store app state in elastic data cache: 
maximize app scalability 
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The evolving runtime environment 
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New Eras Bring New Application Platforms 

Mainframe PC/Client-
Server Web Cloud 

App 
Platform COBOL UNIX Services App Server PaaS 

Each new era in computing brings a new application platform:  
for the Cloud era it is “Platform as a Service” 

vFabric 

Cloud Foundry 

VMware 
Cloud 

Application 
Platform 
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Three layers of Cloud Computing 

SaaS 
Software as a Service 

SaaS
Software as a Service

PaaS
Platform as a Service

IaaS
Infrastructure as a 

Service

Three layers of Cloud Computing

3

PaaS 
Platform as a Service 

IaaS 
Infrastructure as a Service 
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Cloud Foundry Big Picture 
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Cloud Foundry Open PaaS 

§ Multiple languages and frameworks 
§ Multiple deployment options 
§  A variety of services 

Cloud Foundry Open PaaS

• Multiple languages and frameworks
• Multiple deployment options
• A variety of services

5

Open Source

Extend it to meet your needs
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Inside Cloud Foundry 
Inside Cloud Foundry

6

Router 

vSphere 5 

Health Manager 

Execution environment Services 

user apps Cloud Controller user apps 

vmc client STS plugin 
browser 
(user app 
access) 
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Broad support for application frameworks 

§  JVM 
•  Spring, Grails, Roo, Lift, plain Java 

§  Ruby 
• Rails, Sinatra 

§  Node.js 
§  Community contributions 
•  Erlang, Python, PHP, .Net 
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JVM Frameworks 

§  Unit of deployment: Java WARs 
• Can run any standard WAR file 
•  Servlet 2.5 

•  don’t assume a particular container 

§  Spring, Grails, Lift framework 
•  Auto-reconfiguration goodies 
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Inside Staged Applications 

§  Stager packages applications into executable droplets 
•  provides a runtime container 
•  can rewrite configuration files 

•  can add libraries 

§  For Spring/Grails applications 
•  provides a servlet container 

•  deploys the app into the container 

•  configures the container to listen on the correct port – adds auto-
reconfiguration lib to the class path 

•  rewrites web.xml 
•  registers auto-reconfiguration BeanFactoryPostProcessor 
•  registers CloudApplicationContextInitializer 

•  adds JDBC drivers to class path 
•  MySQL or PostgreSQL depending on bound services 
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“Leave my app alone!” 

§  No Problem 
§  Plain Java framework 
•  bare minimum staging 
•  no manipulation of configuration files – no additions to the class path 

•  just your application 
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Elasticity on demand 

§  Scale up in seconds 

•  vmc instances myapp +2 

§  Scale down in seconds 

•  vmc instances myapp -2 

§ Monitor your application instances 

•  per instance: memory, CPU, disk, uptime 

•  vmc stats myapp 
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Surviving Disaster 

§  Applications crash 
•  impossible to avoid 
•  it will happen, sooner or later 

§ Optimize for mean time to recovery 

• mean time between failures is not as important 
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Services: Developer’s perspective 

§  Use services that meet applicationʼs needs 

§  Trivial provisioning of services 

•  vmc create-service mongodb documents-db 

•  vmc bind-service inventory-app documents-db 

§  Build service-focused polyglot apps 

• Change languages and framework as needed 

§  Not worry about operating services! 
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Exposing services 

§  VCAP_* environment variables provide configuration to 
applications 

§  VCAP_SERVICES with service connection info 
{	
  

	
  "name":	
  "inventory-­‐db",	
  
	
  "label":	
  "mysql-­‐5.1",	
  
	
  "plan":	
  "free",	
  
	
  "credentials":	
  {	
  
	
   	
  "node_id":	
  "mysql_node_4",	
  
	
   	
  "hostname":	
  "192.168.2.35",	
  
	
   	
  "port":	
  45678,	
  
	
   	
  "password":	
  "dfdsf89414",	
  
	
   	
  "name":	
  "kjkrewqr90",	
  
	
   	
  "user":	
  "hwerkjewk”	
  
	
  }	
  

}	
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How will Spring help you to move your 
apps to the cloud? 
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Key Elements of Spring: Ready for 2012 & Beyond 

4CONFIDENTIAL 4CONFIDENTIAL

Key Elements of Spring: Ready for 2011 & Beyond
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More important than ever!
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Spring Focus Areas 

3
5 
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Spring 3.2 Strategy 

§  Early support for latest Java specifications 
•  Java EE 7 as the central theme 
•  As usual, support for selected specifications in individual form 

• With Java 8’s language and API enhancements in mind already 

§  Preserving compatibility with Java 5+ 
•  Java SE 5+ as well as Java EE 5+ 

•  For the entire Spring 3.x branch 
• However, stronger focus on a Java SE 7 and Servlet 3.0+ world 

§  Best possible experience on modern deployment environments 
•  From Tomcat 7 and WebSphere 8 to Google App Engine and Cloud Foundry 



37 

Auto-Reconfiguration: Getting Started 

§  Deploy Spring apps to the cloud without changing a single line of 
code 

§  Cloud Foundry automatically re-configures bean definitions to bind to 
cloud services 

§ Works with spring and grails frameworks 

Auto-Reconfiguration: Getting Started

• Deploy Spring apps to the cloud without changing a 
single line of code

• Cloud Foundry automatically re-configures bean 
definitions to bind to cloud services

• Works with spring and grails frameworks

9

Thursday, October 27, 2011
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Auto-Reconfiguration: Relational DB 
Auto-Reconfiguration: Relational DB

• Detects beans of type javax.sql.DataSource
• Connects to MySQL or PostgreSQL services

– Specifies driver, url, username, password, validation query
• Creates Commons DBCP or Tomcat DataSource

10

<bean class="org.apache.commons.dbcp.BasicDataSource" 
destroy-method="close" id="dataSource">

<property name="driverClassName" value="org.h2.Driver" />
" <property name="url" value="jdbc:h2:mem:" />
" <property name="username" value="sa" />
" <property name="password" value="" />
</bean>

Thursday, October 27, 2011

§  Detects beans of type javax.sql.DataSource 
§  Connects to MySQL or PostgreSQL services 
• Specifies driver, url, username, password, validation 
query 

§  Creates Commons DBCP or Tomcat DataSource 
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Auto-Reconfiguration: ORM 

§  Adjusts Hibernate Dialect 
§  Changes hibernate.dialect property to MySQLDialect (MyISAM) or 

PostgreSQLDialect 
•  org.springframework.orm.jpa.AbstractEntityManagerFactoryBean 
•  org.springframework.orm.hibernate3.AbstractSessionFactoryBean(Spring 2.5 

and 3.0) 
•  org.springframework.orm.hibernate3.SessionFactoryBuilderSupport (Spring 

3.1) 

Auto-Reconfiguration: ORM

• Adjusts Hibernate Dialect
• Changes hibernate.dialect property to MySQLDialect 

(MyISAM) or PostgreSQLDialect
– org.springframework.orm.jpa.AbstractEntityManagerFactoryBean
– org.springframework.orm.hibernate3.AbstractSessionFactoryBean (Spring 

2.5 and 3.0)
– org.springframework.orm.hibernate3.SessionFactoryBuilderSupport 

(Spring 3.1)

11

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean"
id="entityManagerFactory">

<property name="dataSource" ref="dataSource"/>
</bean>

Thursday, October 27, 2011
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Auto-Reconfiguration: NoSQL 

§ Works with Spring Data 
• Connects to MongoDB service (Document Store) 
• Connects to Redis service (Key-Value Store) 

Auto-Reconfiguration: NoSQL

• Works with Spring Data
• Connects to MongoDB service (Document Store)
• Connects to Redis service (Key-Value Store)

12

Thursday, October 27, 2011



41 

What is Spring Data? 

§  Umbrella of projects embracing the various new data access 
technologies 
• Non-relational DBs 
• Map-Reduce frameworks – Cloud-based data services 

§  Enhances developer productivity 
• Removes API noise, boiler-plate code and resource management 
• Offers a consistent programming model 

§  Builds on top of existing Spring features and projects 
•  e.g. Inversion of control, life-cycle management, type conversion, portable data 

access exceptions, caching 
•  Easy to add to your application 
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Auto-Reconfiguration: RabbitMQ 

§ Works with Spring AMQP 1.0 
•  Provides publishing, multithreaded consumer generation, and message 

converters 

•  Facilitates management of AMQP resources while promoting DI and 
declarative configuration 

§  Detects beans of type 
    org.springframework.amqp.rabbit.connection.ConnectionFactory 

§  Connects to Rabbit Service 
•  Specifies host, virtual host, port, username, password 

§  Creates CachingConnectionFactory 

Auto-Reconfiguration: RabbitMQ

• Works with Spring AMQP 1.0
– Provides publishing, multithreaded consumer generation, 

and message converters
– Facilitates management of AMQP resources while promoting 

DI and declarative configuration
• Detects beans of type 

org.springframework.amqp.rabbit.connection.ConnectionFactory

• Connects to Rabbit Service
– Specifies host, virtual host, port, username, password

• Creates CachingConnectionFactory

16

<rabbit:connection-factory id="rabbitConnectionFactory" host="localhost" 
password="testpwd" port="1238" username="testuser" virtual-host="virthost" />

Thursday, October 27, 2011



43 

Auto-Reconfiguration: How it works 

§  Cloud Foundry installs a BeanFactoryPostProcessor in your 
application context during staging 

•  Adds jar to your application 

• Modifies web.xml to load BFPP 

§  Adds context file to contextConfigLocation – web-app context-
param 

•  Spring MVC DispatcherServlet init-param 

§  Adds PostgreSQL and MySQL driver jars as needed for DataSource 
reconfiguration 
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Auto-Reconfiguration: Limitations 

§  Exactly one service of a given type bound to application 

•  e.g. Only one relational DB service (MySQL or PostgreSQL) 

§  Exactly one bean of matching type in application 

•  e.g. Only one bean of type javax.sql.DataSource 

§  Auto-Reconfiguration is skipped if limitations not met 

§  Custom configuration is not preserved 

•  e.g. Pool sizes, caching or connection properties 

§  Use cloud namespace instead 
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Auto-Reconfiguration: Opting Out 

§  Two ways to explicitly disable auto-reconfiguration: 

• Choose framework “JavaWeb” when deploying application 

•  Application remains unchanged during staging 

•  Unable to take advantage of profile feature 

• Use any <cloud> element that creates a bean representing a service 

•  Explicit control of service bindings implies that auto- reconfiguration is unnecessary 



46 

Introducing… the Cloud Namespace 

§  <cloud:> namespace for use in Spring app contexts 
§  Provides application-level control of bean service bindings 
§  Recommended for development of new cloud apps 
§  Use when: 
•  You have multiple services of the same type 
•  You have multiple connecting beans of the same type 

•  e.g. DataSource, MongoDBFactory 

•  You have custom bean configuration 
•  e.g. DataSource pool size, connection properties 
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Including Cloud Namespace in Your App 

§  Declare Maven Dependency and Repository 
§  Add namespace declaration to app context files 

Including Cloud Namespace in Your App

• Declare Maven Dependency and Repository
• Add namespace declaration to app context files 

24

<dependencies>
<dependency>

<groupId>org.cloudfoundry</groupId>
<artifactId>cloudfoundry-runtime</artifactId>
<version>0.8.1</version>

" </dependency>
......
<repositories>

<repository>
" <id>org.springframework.milestone</id>

" " <name>Spring Framework Milestone Repository</name>
" " <url>http://maven.springframework.org/milestone</url>

</repository>
......

Thursday, October 27, 2011
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<cloud:service-scan> 

§  Scans all services bound to the application and creates a bean of 
an appropriate type for each 
•  Same bean types as auto-reconfiguration 

§  Useful during early development phases 

<cloud:service-scan>

• Scans all services bound to the application and creates a 
bean of an appropriate type for each
– Same bean types as auto-reconfiguration

• Useful during early development phases

25

<beans" ...  
       xmlns:cloud="http://schema.cloudfoundry.org/spring"
" xsi:schemaLocation="http://schema.cloudfoundry.org/spring 
       http://schema.cloudfoundry.org/spring/cloudfoundry-spring-0.8.xsd
" ...">

<cloud:service-scan/>

</beans>

Thursday, October 27, 2011
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<cloud:service-scan> Autowire Dependencies 

§  Created beans can be autowired as dependencies 
§  Use @Qualifier with service name if multiple services of same type 

bound to app 

<cloud:service-scan> Autowire Dependencies

• Created beans can be autowired as dependencies
• Use @Qualifier with service name if multiple services of 

same type bound to app

26

@Autowired(required=false)
private ConnectionFactory rabbitConnectionFactory;

@Autowired
private RedisConnectionFactory redisConnectionFactory;

@Autowired
@Qualifier("test_mysql_database")
private DataSource mysqlDataSource;

@Autowired(required=false)
@Qualifier("test_postgres_database")
private DataSource postgresDataSource;

Thursday, October 27, 2011



50 

<cloud:service-scan> Declare Dependencies 

§  Created beans ids will match service names 
§  Use service name in dependency declarations 

<cloud:service-scan> Declare Dependencies

• Created beans ids will match service names
• Use service name in dependency declarations

27

<!--  Connects to cloud service named "contacts-db" -->
<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean"

id="entityManagerFactory">
        <property name="dataSource" ref="contacts-db"/>
</bean>

<!--  Connects to cloud service named "tweet-cache" -->
<bean id= "redisTemplate" class= "org.sf.data.redis.core.RedisTemplate" >
    " <property name="connectionFactory" ref="tweet-cache"/>

....
</bean>

Thursday, October 27, 2011
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<cloud:data-source> 

§  Configures a DataSource bean 
• Commons DBCP or Tomcat DataSource 

§  Basic attributes: 
•  id: defaults to service name 

•  service-name: only needed if you have multiple relational database services 
bound to the app 

<cloud:data-source>

• Configures a DataSource bean
– Commons DBCP or Tomcat DataSource

• Basic attributes:
– id: defaults to service name
– service-name: only needed if you have multiple relational 

database services bound to the app

•

29

<cloud:data-source id="dataSource"/>

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean"
id="entityManagerFactory">

        <property name="dataSource" ref="dataSource"/>
</bean>

Thursday, October 27, 2011
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Spring 3.1 Environment Abstraction 

§  Bean definitions for a specific environment (Profiles) 
•  e.g. development, testing, production 
•  Possibly different deployment environments 

•  Activate profiles by name 
•  spring.profiles.active system property 
•  Other means outside deployment unit 
•  “default” profile activates if no other profiles specified 

§  Custom resolution of placeholders 
• Dependent on the actual environment 

• Ordered property sources 

§  Requires Spring 3.1 (or later) 
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Isolating Cloud Foundry Configuration 

§  Switch between local, testing and Cloud Foundry deployments with 
Profiles 

§  “cloud” profile automatically activates on Cloud Foundry 
•  usage of the cloud namespace should occur within the cloud profile block 
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Isolating Cloud Foundry Configuration Isolating Cloud Foundry Configuration

47

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean"
id="entityManagerFactory">

<property name="dataSource" ref="dataSource"/>
</bean>

<beans profile="cloud">
" <cloud:data-source id="dataSource" />
</beans>
"
<beans profile="default">
" <bean class="org.a.commons.dbcp.BasicDataSource" id="dataSource">

" <property name="url" value="jdbc:mysql://localhost/stalker" />
" </bean>
</beans>

Thursday, October 27, 2011
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Using Profiles to Enable Features 

§  Use profiles to add features when deploying to Cloud Foundry 
•  e.g. Using Send Grid to send email 

Using Profiles to Enable Features

• Use profiles to add features when deploying to Cloud 
Foundry
– e.g. Using Send Grid to send email

49

<beans profile="cloud">
<bean name="mailSender" class="example.SendGridMailSender">
" <property name="apiUser" value="youremail@domain.com" />

" " <property name="apiKey" value="secureSecret" />
" </bean>
</beans>

Thursday, October 27, 2011
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Cloud Properties 

§  Cloud Foundry uses Environment abstraction to automatically 
expose properties to Spring 3.1 apps 
•  Basic information about the application, such as its name and the cloud 

provider 

• Detailed connection information for bound services 
•  cloud.services.{service-name}.connection.{property} 
•  aliases for service name created based on the service type 

•  e.g. “cloud.services.mysql.connection.{property}” 
•  only if there is a single service for that type bound 
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Profile Support: How it works 

§  Cloud Foundry installs a custom ApplicationContextInitializer in 
your app during staging 

• Modifies web.xml 

•  Adds to contextInitializerClasses context-param 

§  Adds “cloud” as an active profile 

§  Adds a PropertySource to the Environment 
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Summary 

§  Comprehensive set of services 

§  Spring developers served well 

• Dependency injection proves the right approach, again! 

§ Many simplifications to use services 

•  Auto-reconfig 

• Cloud namespace 

• Cloud profile 

§  Focus on your app; let us worry about services! 
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Architectural Principles for the cloud 

§  Decoupled 
§  Elastic 
§  Early instrumentation 

§  Continuous optimization 

§  Fast provisioning 

§  Lightweight 
§  Framework based 
•  Spring Data 

§  Container independent 
§  Enhanced with new NoSQL 
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For any questions, contact  
tkarlsson@vmware.com 

+46 702 840075 


