
© 2011 VMware Inc. All rights reserved

Enable your applications to unleash the power
of the cloud using Spring Framework

Tobias Karlsson

SpringSource a division of VMware

2

Who’s Tobias?

§  Started out as a Java
consultant

§ Worked 4 years with mobile
services in MENA and APAC

§  Currently living in Stockholm

§  Currently working for
SpringSource as a Sales
Engineer in Northern Europe

3

Agenda

§  Background
§  Implications for your application
§  The evolving runtime environment
§  Spring Framework
§ Moving your application to Cloud Foundry
§  Architectural Principles of the cloud

Auto-Reconfiguration: Getting Started

• Deploy Spring apps to the cloud without changing a
single line of code

• Cloud Foundry automatically re-configures bean
definitions to bind to cloud services

• Works with spring and grails frameworks

9

Thursday, October 27, 2011

4 It’s a “New” World

5

Mobile first, mobile only???

6

web-app &
browser

users &
services

User Centric

7

what happened

last month?

what’s happening

now?

Real-time, contextual, social

8

Solving Google style type problems

9

SSD

Latency Sensitive

“memory is the new disk”

10

SaaS

App

SaaS

App

SaaS

App
IaaS

PaaS

PaaS

Corporate
Data

Centers

On modern infrastructure

11

SaaS

App

SaaS

App

SaaS

App
IaaS

PaaS

PaaS

Corporate
Data

Centers

On modern infrastructure

12

Frequent deployments

13

So, what does this all mean for your
applications?

14

Real life developing a web product Real life developing a web product

9

15

Client

Server

View
Generation

Controllers

Service Layer

Repositories Channels RDBMS
CRUD

Application

Server

Browser
Browser-based

HTML Rendering

(progressive

enhancement)

HTML HTTP

Anatomy of a web app

16

Client

PaaS

Browser app or

embedded in native

JSON HTTP & websockets

HTML5 & JS Engine

Controllers DOM

Client-side model

events
&

 notifications

web stg

Service Service Service
business /

domain services

Service Service Service platform services,

web APIs
SQL NoSQL Other

Anatomy of a next-gen app

17

Data isn’t just relational

§  Relational database stores CRUD data, seeing huge rise in CRAP
data
• Created, Replicated, Appended, Processed

§ Other store types:
• Document [MongoDB]
•  Key-value [Redis]

• Column-family [Cassandra]

• Graph database [Neo4j]
•  Blob stores

§  Trend is to supplement RDB with non-relational stores

18

New Era Requires a Shift: Elasticity from Apps to Data

Develop using modern frameworks:
agile apps decoupled from middleware

Access app data through elastic data
fabric and/or in-memory SQL:

maximize data scalability

Use cloud-friendly messaging protocols:
enable flexible app integration

Leverage runtime container optimized
for virtualization: provision in seconds

Store app state in elastic data cache:
maximize app scalability

19

The evolving runtime environment

20

New Eras Bring New Application Platforms

Mainframe PC/Client-
Server Web Cloud

App
Platform COBOL UNIX Services App Server PaaS

Each new era in computing brings a new application platform:
for the Cloud era it is “Platform as a Service”

vFabric

Cloud Foundry

VMware
Cloud

Application
Platform

21

Three layers of Cloud Computing

SaaS
Software as a Service

SaaS
Software as a Service

PaaS
Platform as a Service

IaaS
Infrastructure as a

Service

Three layers of Cloud Computing

3

PaaS
Platform as a Service

IaaS
Infrastructure as a Service

22

Data
Services

Other
Services

Msg
Services

Cloud Foundry Big Picture

.js

Private	
 	

Clouds	
 	

Public	

Clouds	

Micro	

Clouds	

.COM

Partners	

23

Cloud Foundry Open PaaS

§ Multiple languages and frameworks
§ Multiple deployment options
§  A variety of services

Cloud Foundry Open PaaS

• Multiple languages and frameworks
• Multiple deployment options
• A variety of services

5

Open Source

Extend it to meet your needs

24

Inside Cloud Foundry
Inside Cloud Foundry

6

Router

vSphere 5

Health Manager

Execution environment Services

user apps Cloud Controller user apps

vmc client STS plugin
browser
(user app
access)

25

Broad support for application frameworks

§  JVM
•  Spring, Grails, Roo, Lift, plain Java

§  Ruby
• Rails, Sinatra

§  Node.js
§  Community contributions
•  Erlang, Python, PHP, .Net

26

JVM Frameworks

§  Unit of deployment: Java WARs
• Can run any standard WAR file
•  Servlet 2.5

•  don’t assume a particular container

§  Spring, Grails, Lift framework
•  Auto-reconfiguration goodies

27

Inside Staged Applications

§  Stager packages applications into executable droplets
•  provides a runtime container
•  can rewrite configuration files

•  can add libraries

§  For Spring/Grails applications
•  provides a servlet container

•  deploys the app into the container

•  configures the container to listen on the correct port – adds auto-
reconfiguration lib to the class path

•  rewrites web.xml
•  registers auto-reconfiguration BeanFactoryPostProcessor
•  registers CloudApplicationContextInitializer

•  adds JDBC drivers to class path
•  MySQL or PostgreSQL depending on bound services

28

“Leave my app alone!”

§  No Problem
§  Plain Java framework
•  bare minimum staging
•  no manipulation of configuration files – no additions to the class path

•  just your application

29

Elasticity on demand

§  Scale up in seconds

•  vmc instances myapp +2

§  Scale down in seconds

•  vmc instances myapp -2

§ Monitor your application instances

•  per instance: memory, CPU, disk, uptime

•  vmc stats myapp

30

Surviving Disaster

§  Applications crash
•  impossible to avoid
•  it will happen, sooner or later

§ Optimize for mean time to recovery

• mean time between failures is not as important

31

Services: Developer’s perspective

§  Use services that meet applicationʼs needs

§  Trivial provisioning of services

•  vmc create-service mongodb documents-db

•  vmc bind-service inventory-app documents-db

§  Build service-focused polyglot apps

• Change languages and framework as needed

§  Not worry about operating services!

32

Exposing services

§  VCAP_* environment variables provide configuration to
applications

§  VCAP_SERVICES with service connection info
{	

	
 "name":	
 "inventory-­‐db",	

	
 "label":	
 "mysql-­‐5.1",	

	
 "plan":	
 "free",	

	
 "credentials":	
 {	

	
 	
 "node_id":	
 "mysql_node_4",	

	
 	
 "hostname":	
 "192.168.2.35",	

	
 	
 "port":	
 45678,	

	
 	
 "password":	
 "dfdsf89414",	

	
 	
 "name":	
 "kjkrewqr90",	

	
 	
 "user":	
 "hwerkjewk”	

	
 }	

}	

33

How will Spring help you to move your
apps to the cloud?

34

Key Elements of Spring: Ready for 2012 & Beyond

4CONFIDENTIAL 4CONFIDENTIAL

Key Elements of Spring: Ready for 2011 & Beyond

Simple

Object

Simple

ObjectsD
ep

en
de

nc
y

In
je

ct
io

n

A
O
P

Portable Service Abstractions

More important than ever!

35

Spring Focus Areas

3
5

Integration

Core

Tools

Data

Web &
 Mobile

Spring Framework

Spring MVC

Spring Web Flow

Spring Web Services

Spring Integration

Spring AMQP

Spring Batch

STS

Spring Roo

WaveMaker

Spring Mobile

Spring Android

Spring Social

Spring Data

Spring GemFire

Spring Hadoop

36

Spring 3.2 Strategy

§  Early support for latest Java specifications
•  Java EE 7 as the central theme
•  As usual, support for selected specifications in individual form

• With Java 8’s language and API enhancements in mind already

§  Preserving compatibility with Java 5+
•  Java SE 5+ as well as Java EE 5+

•  For the entire Spring 3.x branch
• However, stronger focus on a Java SE 7 and Servlet 3.0+ world

§  Best possible experience on modern deployment environments
•  From Tomcat 7 and WebSphere 8 to Google App Engine and Cloud Foundry

37

Auto-Reconfiguration: Getting Started

§  Deploy Spring apps to the cloud without changing a single line of
code

§  Cloud Foundry automatically re-configures bean definitions to bind to
cloud services

§ Works with spring and grails frameworks

Auto-Reconfiguration: Getting Started

• Deploy Spring apps to the cloud without changing a
single line of code

• Cloud Foundry automatically re-configures bean
definitions to bind to cloud services

• Works with spring and grails frameworks

9

Thursday, October 27, 2011

38

Auto-Reconfiguration: Relational DB
Auto-Reconfiguration: Relational DB

• Detects beans of type javax.sql.DataSource
• Connects to MySQL or PostgreSQL services

– Specifies driver, url, username, password, validation query
• Creates Commons DBCP or Tomcat DataSource

10

<bean class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close" id="dataSource">

<property name="driverClassName" value="org.h2.Driver" />
" <property name="url" value="jdbc:h2:mem:" />
" <property name="username" value="sa" />
" <property name="password" value="" />
</bean>

Thursday, October 27, 2011

§  Detects beans of type javax.sql.DataSource
§  Connects to MySQL or PostgreSQL services
• Specifies driver, url, username, password, validation
query

§  Creates Commons DBCP or Tomcat DataSource

39

Auto-Reconfiguration: ORM

§  Adjusts Hibernate Dialect
§  Changes hibernate.dialect property to MySQLDialect (MyISAM) or

PostgreSQLDialect
•  org.springframework.orm.jpa.AbstractEntityManagerFactoryBean
•  org.springframework.orm.hibernate3.AbstractSessionFactoryBean(Spring 2.5

and 3.0)
•  org.springframework.orm.hibernate3.SessionFactoryBuilderSupport (Spring

3.1)

Auto-Reconfiguration: ORM

• Adjusts Hibernate Dialect
• Changes hibernate.dialect property to MySQLDialect

(MyISAM) or PostgreSQLDialect
– org.springframework.orm.jpa.AbstractEntityManagerFactoryBean
– org.springframework.orm.hibernate3.AbstractSessionFactoryBean (Spring

2.5 and 3.0)
– org.springframework.orm.hibernate3.SessionFactoryBuilderSupport

(Spring 3.1)

11

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean"
id="entityManagerFactory">

<property name="dataSource" ref="dataSource"/>
</bean>

Thursday, October 27, 2011

40

Auto-Reconfiguration: NoSQL

§ Works with Spring Data
• Connects to MongoDB service (Document Store)
• Connects to Redis service (Key-Value Store)

Auto-Reconfiguration: NoSQL

• Works with Spring Data
• Connects to MongoDB service (Document Store)
• Connects to Redis service (Key-Value Store)

12

Thursday, October 27, 2011

41

What is Spring Data?

§  Umbrella of projects embracing the various new data access
technologies
• Non-relational DBs
• Map-Reduce frameworks – Cloud-based data services

§  Enhances developer productivity
• Removes API noise, boiler-plate code and resource management
• Offers a consistent programming model

§  Builds on top of existing Spring features and projects
•  e.g. Inversion of control, life-cycle management, type conversion, portable data

access exceptions, caching
•  Easy to add to your application

42

Auto-Reconfiguration: RabbitMQ

§ Works with Spring AMQP 1.0
•  Provides publishing, multithreaded consumer generation, and message

converters

•  Facilitates management of AMQP resources while promoting DI and
declarative configuration

§  Detects beans of type
 org.springframework.amqp.rabbit.connection.ConnectionFactory

§  Connects to Rabbit Service
•  Specifies host, virtual host, port, username, password

§  Creates CachingConnectionFactory

Auto-Reconfiguration: RabbitMQ

• Works with Spring AMQP 1.0
– Provides publishing, multithreaded consumer generation,

and message converters
– Facilitates management of AMQP resources while promoting

DI and declarative configuration
• Detects beans of type

org.springframework.amqp.rabbit.connection.ConnectionFactory

• Connects to Rabbit Service
– Specifies host, virtual host, port, username, password

• Creates CachingConnectionFactory

16

<rabbit:connection-factory id="rabbitConnectionFactory" host="localhost"
password="testpwd" port="1238" username="testuser" virtual-host="virthost" />

Thursday, October 27, 2011

43

Auto-Reconfiguration: How it works

§  Cloud Foundry installs a BeanFactoryPostProcessor in your
application context during staging

•  Adds jar to your application

• Modifies web.xml to load BFPP

§  Adds context file to contextConfigLocation – web-app context-
param

•  Spring MVC DispatcherServlet init-param

§  Adds PostgreSQL and MySQL driver jars as needed for DataSource
reconfiguration

44

Auto-Reconfiguration: Limitations

§  Exactly one service of a given type bound to application

•  e.g. Only one relational DB service (MySQL or PostgreSQL)

§  Exactly one bean of matching type in application

•  e.g. Only one bean of type javax.sql.DataSource

§  Auto-Reconfiguration is skipped if limitations not met

§  Custom configuration is not preserved

•  e.g. Pool sizes, caching or connection properties

§  Use cloud namespace instead

45

Auto-Reconfiguration: Opting Out

§  Two ways to explicitly disable auto-reconfiguration:

• Choose framework “JavaWeb” when deploying application

•  Application remains unchanged during staging

•  Unable to take advantage of profile feature

• Use any <cloud> element that creates a bean representing a service

•  Explicit control of service bindings implies that auto- reconfiguration is unnecessary

46

Introducing… the Cloud Namespace

§  <cloud:> namespace for use in Spring app contexts
§  Provides application-level control of bean service bindings
§  Recommended for development of new cloud apps
§  Use when:
•  You have multiple services of the same type
•  You have multiple connecting beans of the same type

•  e.g. DataSource, MongoDBFactory

•  You have custom bean configuration
•  e.g. DataSource pool size, connection properties

47

Including Cloud Namespace in Your App

§  Declare Maven Dependency and Repository
§  Add namespace declaration to app context files

Including Cloud Namespace in Your App

• Declare Maven Dependency and Repository
• Add namespace declaration to app context files

24

<dependencies>
<dependency>

<groupId>org.cloudfoundry</groupId>
<artifactId>cloudfoundry-runtime</artifactId>
<version>0.8.1</version>

" </dependency>
......
<repositories>

<repository>
" <id>org.springframework.milestone</id>

" " <name>Spring Framework Milestone Repository</name>
" " <url>http://maven.springframework.org/milestone</url>

</repository>
......

Thursday, October 27, 2011

48

<cloud:service-scan>

§  Scans all services bound to the application and creates a bean of
an appropriate type for each
•  Same bean types as auto-reconfiguration

§  Useful during early development phases

<cloud:service-scan>

• Scans all services bound to the application and creates a
bean of an appropriate type for each
– Same bean types as auto-reconfiguration

• Useful during early development phases

25

<beans" ...
 xmlns:cloud="http://schema.cloudfoundry.org/spring"
" xsi:schemaLocation="http://schema.cloudfoundry.org/spring
 http://schema.cloudfoundry.org/spring/cloudfoundry-spring-0.8.xsd
" ...">

<cloud:service-scan/>

</beans>

Thursday, October 27, 2011

49

<cloud:service-scan> Autowire Dependencies

§  Created beans can be autowired as dependencies
§  Use @Qualifier with service name if multiple services of same type

bound to app

<cloud:service-scan> Autowire Dependencies

• Created beans can be autowired as dependencies
• Use @Qualifier with service name if multiple services of

same type bound to app

26

@Autowired(required=false)
private ConnectionFactory rabbitConnectionFactory;

@Autowired
private RedisConnectionFactory redisConnectionFactory;

@Autowired
@Qualifier("test_mysql_database")
private DataSource mysqlDataSource;

@Autowired(required=false)
@Qualifier("test_postgres_database")
private DataSource postgresDataSource;

Thursday, October 27, 2011

50

<cloud:service-scan> Declare Dependencies

§  Created beans ids will match service names
§  Use service name in dependency declarations

<cloud:service-scan> Declare Dependencies

• Created beans ids will match service names
• Use service name in dependency declarations

27

<!-- Connects to cloud service named "contacts-db" -->
<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean"

id="entityManagerFactory">
 <property name="dataSource" ref="contacts-db"/>
</bean>

<!-- Connects to cloud service named "tweet-cache" -->
<bean id= "redisTemplate" class= "org.sf.data.redis.core.RedisTemplate" >
 " <property name="connectionFactory" ref="tweet-cache"/>

....
</bean>

Thursday, October 27, 2011

51

<cloud:data-source>

§  Configures a DataSource bean
• Commons DBCP or Tomcat DataSource

§  Basic attributes:
•  id: defaults to service name

•  service-name: only needed if you have multiple relational database services
bound to the app

<cloud:data-source>

• Configures a DataSource bean
– Commons DBCP or Tomcat DataSource

• Basic attributes:
– id: defaults to service name
– service-name: only needed if you have multiple relational

database services bound to the app

•

29

<cloud:data-source id="dataSource"/>

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean"
id="entityManagerFactory">

 <property name="dataSource" ref="dataSource"/>
</bean>

Thursday, October 27, 2011

52

Spring 3.1 Environment Abstraction

§  Bean definitions for a specific environment (Profiles)
•  e.g. development, testing, production
•  Possibly different deployment environments

•  Activate profiles by name
•  spring.profiles.active system property
•  Other means outside deployment unit
•  “default” profile activates if no other profiles specified

§  Custom resolution of placeholders
• Dependent on the actual environment

• Ordered property sources

§  Requires Spring 3.1 (or later)

53

Isolating Cloud Foundry Configuration

§  Switch between local, testing and Cloud Foundry deployments with
Profiles

§  “cloud” profile automatically activates on Cloud Foundry
•  usage of the cloud namespace should occur within the cloud profile block

54

Isolating Cloud Foundry Configuration Isolating Cloud Foundry Configuration

47

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean"
id="entityManagerFactory">

<property name="dataSource" ref="dataSource"/>
</bean>

<beans profile="cloud">
" <cloud:data-source id="dataSource" />
</beans>
"
<beans profile="default">
" <bean class="org.a.commons.dbcp.BasicDataSource" id="dataSource">

" <property name="url" value="jdbc:mysql://localhost/stalker" />
" </bean>
</beans>

Thursday, October 27, 2011

55

Using Profiles to Enable Features

§  Use profiles to add features when deploying to Cloud Foundry
•  e.g. Using Send Grid to send email

Using Profiles to Enable Features

• Use profiles to add features when deploying to Cloud
Foundry
– e.g. Using Send Grid to send email

49

<beans profile="cloud">
<bean name="mailSender" class="example.SendGridMailSender">
" <property name="apiUser" value="youremail@domain.com" />

" " <property name="apiKey" value="secureSecret" />
" </bean>
</beans>

Thursday, October 27, 2011

56

Cloud Properties

§  Cloud Foundry uses Environment abstraction to automatically
expose properties to Spring 3.1 apps
•  Basic information about the application, such as its name and the cloud

provider

• Detailed connection information for bound services
•  cloud.services.{service-name}.connection.{property}
•  aliases for service name created based on the service type

•  e.g. “cloud.services.mysql.connection.{property}”
•  only if there is a single service for that type bound

57

Profile Support: How it works

§  Cloud Foundry installs a custom ApplicationContextInitializer in
your app during staging

• Modifies web.xml

•  Adds to contextInitializerClasses context-param

§  Adds “cloud” as an active profile

§  Adds a PropertySource to the Environment

58

Summary

§  Comprehensive set of services

§  Spring developers served well

• Dependency injection proves the right approach, again!

§ Many simplifications to use services

•  Auto-reconfig

• Cloud namespace

• Cloud profile

§  Focus on your app; let us worry about services!

59

Architectural Principles for the cloud

§  Decoupled
§  Elastic
§  Early instrumentation

§  Continuous optimization

§  Fast provisioning

§  Lightweight
§  Framework based
•  Spring Data

§  Container independent
§  Enhanced with new NoSQL

60

For any questions, contact
tkarlsson@vmware.com

+46 702 840075

