copenhagen

goto;

conference

The Value of Values

Rich Hickey
Datomic, Clojure

INTERNATIONAL : .
SOFTWARE DEVELOPMENT —

CONFER

1.

Information

Inform
‘to convey knowledge via facts’
‘give shape to (the mind)’
Information

the facts

What is a Fact!

where specific information is stored
There is a place for every piece of information
Facts have operations, e.g. get and set
Operations control how facts can change

To convey a fact, convey its location

Place

‘A particular portion of space’
‘An area used for a particular purpose’

Memory address, disk sector

‘Information’ Systems

In memory
mutable objects are abstractions of places
objects have methods

In durable storage
tables/documents/records are places

DBs have update

PLOP

PLace-Oriented Programming
New information replaces old
Born of limitations of early computers

small RAM and disks

Those limitations are long gone

The Efficiencies of Place

Ok, when ‘birthing’ new values
birthing == prior to perceptibility
i.e. prior to becoming a fact

But: an detail

LT, not T.T.

Memory and Records

We've co-opted

and believe our own mythos
Mental memory is associative and open
Real records are enduring

and accreting

not erase and overwrite

The Point

Values have many advantages
In process
across processes
In storage

We know these things

Value

‘Relative worth’
‘A particular magnitude, number or amount’

‘Precise meaning or significance’

Is a String a Value?

s it immutable?
Equality, comparability are basis for logic

Who wants to go back to mutable Strings!?

Programming Values

Immutable

Don’t need methods
| can send you values without code
and you are fine

Are semantically transparent

Can be abstracted

Values Can be Shared

Share freely
aliases are free
No one can mess you up
nor you them
Incremental change is cheap
Places

Defensive copy, clone, locks

Reproducible Results

Operations on values are stable
Testing
Debugging
reproduce failures w/o replicating state
Places

must establish matching ‘state’ first

Easy to Fabricate

Anything can create compliant values
for testing, simulation
Places

must emulate operational interface

Thwart Imperativeness

Values refuse to help you program imperatively
That’s a feature

Imperative code is inherently complex

Places

Encourage and require imperativeness

Language Independence

Pure values are language independent
the polyglot tool

Places are defined by language constructs
(methods)

can be proxied, remoted, with much effort

Values are Generic

Representations in any language
Few fundamental abstractions

for aggregation (lists, maps, sets)
Places

Operational interface is specific

More code

Poor reuse

Values Are the Best
Interface

For subsystems
can be moved
ported
enqueued

Places

application, language and flow coupled

Values Aggregate

Values aggregate to values
So all benefits accrue to compositions
Places

Combinations of places, what properties?

Need new operational interface for
aggregate

Extended Value
Propositions

Mechanism for conveyance and perception
Mechanism for memory

Reduced coordination

Location flexibility

Essential for decision making

Conveyance

In the small

Aliases of values convey value

Mutable things on queues convey nothing
In the large

Values rule on the wire

No reproducible values in PLOP DBs

Perception

In the small
Values: to reach is to perceive

Places: How to perceive a coherent value
of object with multiple getters?

In the large

Values still rule on the wire

No reproducible values in PLOP DBs

Memory

In the small
Values: remembering == aliasing
Places: copy, if you can

In the large
What if there were no permalinks!?

Place-oriented DBs - DIY time

Reduced Coordination

In the small

Values: No locks!

Places: Lock policies don’t aggregate
In the large

No read transactions!

PLOP: Often gotten wrong

Location Flexibility

In the small
Values: aliasing means only one copy
Places: master copy is special

In the large

Cache (e.g. HT TP caching)
CDN etc

Data-based interface is movable

Facts are Values

Not places
Don’t facts change?
- they incorporate time

Fact - ‘an event or thing known to have
happened or existed’

From: factum - ‘something done’

Facts != Recent Facts

Knowledge is derived from facts
Comparing
Combining
Especially from different time points
You cannot update a fact

any more than you can change the past

Information Systems

Are fundamentally about facts
Maintaining, manipulating

To give users leverage
Making decisions

Systems should be value-oriented

Don’t use process constructs for information

Decision Making

We know what it takes to support our
own decision making (hint: information)

Compare present to past
Spot trends, rates
Aggregates

Often requires time

Programmer [.T.

Source Control
Update in place? - No
Timestamps - of course!
Logs
Update in place? - No

Timestamps - of course!

Big Data
Business to programmers:

“l like your database better than the one
you gave me”

Logs have all the information
and timestamps

We are reactive here
mining logs, seriously?

Not delivering leverage

The Space Age /% 8

Space

“The unlimited expanse in which all things
are located, and all events occur’

If new never fails...
you are effectively running in space
If S3 never fills up...

it is not the cloud, but space

New Facts, New Space

- The end of PLOP

If you can afford thls why do anythlng e-Ise’ o

You can. afford th|s

(thefe W||| be garbage)

Summary

We continue to use place-oriented
programming languages and databases

long after rationale is gone

We are missing out on the value of values
which we recognize

We need to deliver information systems

demand is clear, resources available

Facts do not cease to
exist because they are

ignored.
Aldous Huxley

