
Emerging

Best Practices
in Swift

Ash Furrow





AfraidI was



FineEv
er

yt
hi

ng
 tu

rn
ed

 o
ut



 Best Practices in Swift



What do they look like?

Also, how do we find new ones?



Agenda

• We’ve been here before 

• Learning is forever, deal with it 

• Never throw ideas away 

• How to force yourself to think 

• Always be abstracting



Let’s  go!



This looks strangely familiar…



—Lots of people, for hundreds of years

“Those who don’t study history 
are doomed to repeat it.”



Wow, that’s depressing.



—Me, today

“Those who don’t understand the past 
can’t make informed decisions about the present.”



iOS 5 or earlier?



Before Object Literals

NSArray *array = [NSArray arrayWithObjects:  
    @"This",  
    @"is",  
    @"so",  
    @"tedious", nil]; 

NSDictionary *dictionary = [NSDictionary  
    dictionaryWithObjectsAndKeys:  
    @"Who would do this?", @"Not me", nil]; 

NSNumber *number = [NSNumber numberWithInt:401];



Before Object Literals and ARC

NSArray *array = [[NSArray arrayWithObjects:  
    @"This",  
    @"is",  
    @"so",  
    @"tedious", nil] alloc]; 

NSDictionary *dictionary = [[NSDictionary  
    dictionaryWithObjectsAndKeys:  
    @"Who would do this?", @"Not me", nil] alloc]; 

NSNumber *number = [[NSNumber numberWithInt:401] alloc];



😪



After Object Literals

NSArray *array =  
    @[ @"This", @"is", @"much", @"better" ]; 

NSDictionary *dictionary =  
    @{ @"Who likes this?": @"Me!" }; 

NSNumber *number = @(401);



Object Literals

• Clearly way better 

• Adopted by everyone almost immediately 

• Became a “best practice”



^{



Blocks & GCD

• Introduced in iOS 4 

• Adopted slowly, but surely 

• Required new ways of thinking 

• Did using blocks became a “best practice”?  

• Sort of…



Enable
Blocks

other best practices



^{
Functional Reactive Programming

Futures

Promises
Collections Operations

Callbacks

Inline Network Operations

Generic Datasource Objects

Deferred Customization

Contextual Code Execution



EmbraceChange



Swift 2



Swift 2

• Lots of new syntax 

• New syntax lets us do new things 

• However! Syntax is only a tool 

• Like blocks, Swift 2 syntax is most useful when it enables new ideas



Swift 2

• guard 

• defer 

• throws 

• etc…



Should I use guard?



What can I do with guard?



Examples



Pyramid of Doom

if let thing = optionalThing { 
    if thing.shouldDoThing { 
        if let otherThing = thing.otherThing { 
            doStuffWithThing(otherThing) 
        } 
    } 
}



Clause Applause

if let thing = optionalThing,  
   let otherThing = thing.otherThing  
   where thing.shoudDoThing { 
    doStuffWithThing(otherThing) 
}



Avoid Mutability
func strings( 
    parameter: [String],  
    startingWith prefix: String) -> [String] { 

    var mutableArray = [String]() 
    for string in parameter { 
        if string.hasPrefix(prefix) { 
            mutableArray.append(string) 
        } 
    } 

    return mutableArray 
} ಠ_ಠ



Avoid Mutability

func strings( 
    parameter: [String],  
    startingWith prefix: String) -> [String] { 

    return parameter.filter { $0.hasPrefix(prefix) } 
}



Currying

• One of those weird words you avoid because people who say it are sometimes jerks 

• It’s actually a pretty straightforward concept 

• Currying is a function that returns another function 

• Useful for sharing code that’s mostly the same



Before Currying

func containsAtSign(string: String) -> Bool { 
    return string.characters.contains("@") 
} 

... 

input.filter(containsAtSign)



Currying

func contains(substring: String) -> (String -> Bool) { 
    return { string -> Bool in 
        return string.characters.contains(substring) 
    } 
} 

... 

input.filter(contains("@"))



Currying

func contains(substring: String)(string: String) -> Bool { 
    return string.characters.contains(substring) 
} 

... 

input.filter(contains("@"))



Extract Associated Values

• Use Swift enums 

• Attach associated values 

• Extract using a case



Extract Associated Values

enum Result { 
    case Success 
    case Failure(reason: String) 
} 

switch doThing() { 
case .Success: 
    print("🎉") 
case .Failure(let reason): 
    print("Oops: \(reason)") 
}



Extract Associated Values

enum Result { 
    case Success 
    case Failure(reason: String) 
} 

if case .Failure(let reason) = doThing() { 
    print("😢 \(reason)") 
}



Syntax
That’s all just



Ideas
What matters are



Protocol-Oriented 
Programming



… just go watch the WWDC video.



OthersLet’s ask



Syntax vs Idea

• How to tell if something is universally a good idea, or just enables other ideas? 

• You can’t 

• It’s a false dichotomy 

• I lied to you 

• I’m so sorry



Try stuff
You’ve just got to



Ideas
Never throw away



Never Throw Away Ideas

• Swift was released 

• We treated Swift like object literals instead of like blocks 

• Some of us thought Swift was universally better 

• My fault, oops 😅



MeritOlder ideas have



A lot

iOS developers throw things away



Why?



Beginner learns thing

Is bad at thing

Blames thing

Thing must be bad



Beginner gets more experience

New thing comes out

Learning new thing is easier than old thing

New thing must be good



Appealing
New ideas are



Always a fresh supply of old APIs  
for us to blame

iOS is constantly changing



RefactoringLet’s talk about





What is Not Refactor?

• Refactoring does not add new functionality 

• Refactoring does not change a type’s interface 

• Refactoring does not change a type’s behaviour



Changing a unit test?

Refactoring Rewriting

No Yes



Bad
Rewrites are





Favour incremental change



Code isn’t necessarily valuable

But throwing it away is dangerous



Things to never throw away:

Code
Ideas&



ChangeUnit tests will help



Unit Testing & Thinking

• So, uhh, unit testing 

• Controversial in iOS 

• Not so much everywhere else 

• Why?  

• We’ll get to that



Benefits of Testing

• (Let’s presume that unit testing is a good idea) 

• I really don’t care that much about the tests 

• I care more about how writing tests makes me think about what I’m writing



Benefits of Testing

• Limited object scope is good 

• High cohesion, low coupling 

• How to limit scope? 

• Controlling public interface and dependencies



Dependency injection?

💉



Dependency Injection

• €5 word for a ¢5 idea 

• Your things shouldn’t create the things they need



Example



Without Dependency Injection

class ViewController: UIViewController { 
    let networkController = NetworkController() 

    func viewDidLoad() { 
        super.viewDidLoad() 
        networkController.fetchStuff { 
            self.showStuff() 
        } 
    } 
}



With Dependency Injection

class ViewController: UIViewController { 
    var networkController: NetworkController? 

    func viewDidLoad() { 
        super.viewDidLoad() 
        networkController?.fetchStuff { 
            self.showStuff() 
        } 
    } 
}



Dependency Injection

• Rely on someone else to configure your instance 

• Could be another part of your app (eg: prepareForSegue) 

• Could be a unit test 

• Protocols work really well for this



Dependency Injection

protocol NetworkController { 
    func fetchStuff(completion: () -> ()) 
} 

... 

class APINetworkController: NetworkController { 
    func fetchStuff(completion: () -> ()) { 
        // TODO: fetch stuff and call completion() 
    } 
}



Dependency Injection
protocol NetworkController { 
    func fetchStuff(completion: () -> ()) 
} 

... 

class TestNetworkController: NetworkController { 
    func fetchStuff(completion: () -> ()) { 
        // TODO: stub fetched stuff 
        completion() 
    } 
}



Dependency Injection

• Use of protocols limits coupling between types 

• Adding a method to a protocol becomes a decision you have to make 

• Dependency injection can als be used for shared state, like singletons



Without Dependency Injection

func loadAppSetup() { 
    let defaults =  
        NSUserDefaults.standardUserDefaults() 

    if defaults.boolForKey("launchBefore") == false { 
        runFirstLaunch() 
    } 
}



How would you even test that?



With Dependency Injection

func loadAppSetup(defaults: NSUserDefaults) { 
    if defaults.boolForKey("launchBefore") == false { 
        runFirstLaunch() 
    } 
}



Don’t be an ideologue



Cheat with Dependency Injection

func loadAppSetup( 
    defaults: NSUserDefaults = .standardUserDefaults()){ 

    if defaults.boolForKey("launchBefore") == false { 
        runFirstLaunch() 
    } 
}



Cheat with Dependency Injection

loadAppSetup() // In your app 

loadAppSetup(stubbedUserDefaults) // In your tests



Cheat with Dependency Injection

class ViewController: UIViewController { 
    lazy var networkController: NetworkController =  
        APINetworkController() 

    func viewDidLoad() { 
        super.viewDidLoad() 
        networkController.fetchStuff { 
            self.showStuff() 
        } 
    } 
}



—Mackenzie King (Canada’s Winston Churchill)

“TDD if necessary, but not necessarily TDD.” 



Unit Testing
• Don’t test private functions 

• Also, start marking functions as private 

• Remember, we want to avoid rewriting 

• Don’t test the implementation 

• Don’t use “partial mocks” 

• See @searls post on partial mocks



Unit Testing

• So why don’t iOS developers do unit testing? 

• It’s unfamiliar and no one forces us to do it



BetterTesting code makes me a 

Developer



EverythingAbstract



Two or more lines of repeated code?

Find a better way



 (╯°□°）╯︵ ┻━┻



Look for Abstractions

• You’re already learning new syntax 

• Look for new abstractions along the way 

• Not all ideas will work out 

• But you should still do it 

• Experiment!



No such thing

Failed experiment
as a





LearnAlways opportunities to



Wrap Up

• We have a history of being awesome, let’s keep it up 

• Learning isn’t just for when Xcode is in beta 

• Ideas are more valuable than code, but throwing away either is dangerous 

• Effective unit tests make it easy to change code 

• Operate at the highest level of abstraction you can at any given time



Make
Tomorrow
Better Mistakes


