
1

Mutation Testing in Python
Austin Bingham
@austin_bingham

@sixty_north

Sunday, October 4, 15

2
Sunday, October 4, 15

3
Sunday, October 4, 15

4

Mutation Testing

Sunday, October 4, 15

What is mutation testing?

5

Code under test + test suite

Introduce single change to code under test

Run test suite

Ideally, all changes will result in test failures

Sunday, October 4, 15

A nested loop of mutation and testing
 Basic algorithm

for operator in mutation-operators:

 for site in operator.sites(code):

 operator.mutate(site)

 run_tests()

6
Sunday, October 4, 15

What does mutation testing tell us?

7

Killed

Tests properly detected the
mutation.

Incompetent

Mutation produced code which is
inherently flawed.

Survived

Tests failed to detect the mutant!

Tests are inadequate for detecting
defects in necessary code

 either

Mutated code is extraneous

 or

Sunday, October 4, 15

8
Sunday, October 4, 15

Do my tests meaningfully cover my code's functionality
Goal #1: Coverage analysis

Is a line executed?
versus

Is functionality verified?

9
Sunday, October 4, 15

Survivors can indicate code which is no longer necessary
Goal #2: Detect unnecessary code

10
Sunday, October 4, 15

Examples of mutations

11

• AOD - arithmetic operator deletion
• AOR - arithmetic operator replacement
• ASR - assignment operator replacement
• BCR - break continue replacement
• COD - conditional operator deletion
• COI - conditional operator insertion
• CRP - constant replacement
• DDL - decorator deletion
• EHD - exception handler deletion
• EXS - exception swallowing
• IHD - hiding variable deletion
• IOD - overriding method deletion
• IOP - overridden method calling position change
• LCR - logical connector replacement
• LOD - logical operator deletion
• LOR - logical operator replacement
• ROR - relational operator replacement
• SCD - super calling deletion
• SCI - super calling insert
• SIR - slice index remove

Replace relational operator
x > 1

x < 1

break/continue replacement
break

continue

Sunday, October 4, 15

Long test suites, large code bases, and many operators can add up
Complexity #1: It takes a loooooooong time

12Image credit: John Mainstone (CC BY-SA 3.0)

What to do?
‣Parallelize as much as possible!
‣After baselining:

• only run tests on modified code
• only mutate modified code
‣Speed up test suite

Sunday, October 4, 15

Some incompetent mutants are harder to detect that others
Complexity #2: Incompetence detection

13

"Good luck with that."
Alan Turing (apocryphal)

Sunday, October 4, 15

Some mutants have no detectable differences in functionality
Complexity #3: Equivalent mutants

14

def consume(iterator, n):
 """Advance the iterator n-steps ahead.
 If n is none, consume entirely."""

 # Use functions that consume iterators at C speed.
 if n is None:
 # feed the entire iterator into a zero-length deque
 collections.deque(iterator, maxlen=0)
 else:
 # advance to the empty slice starting at position n
 next(islice(iterator, n, n), None)

Sunday, October 4, 15

15

Cosmic Ray:
Mutation Testing

for Python

Sunday, October 4, 15

Sub-packages and modules are discovered automatically
Cosmic Ray operates on packages

16

find_modules.py

def find_modules(name):
 module_names = [name]
 while module_names:
 module_name = module_names.pop()
 try:
 module = importlib.import_module(module_name)
 yield module
 if hasattr(module, '__path__'):
 for _, name, _ in pkgutil.iter_modules(module.__path__):
 module_names.append('{}.{}'.format(module_name, name))
 except Exception: # pylint:disable=broad-except
 LOG.exception('Unable to import %s', module_name)

Sunday, October 4, 15

Support for tests systems are provided by dynamically discovered modules
Test system plugins

‣ Using OpenStack's stevedore plugin system

‣ Plugins can come from external packages

‣ Define a TestRunner subclass and implement
the _run() method

• Report a simple success or failure along with a
printable object containing more information

‣ TestRunners are only given a "start directory"
as context

17

cosmic_ray

py.test

unittest
plugins

my_package

my_test_system

Sunday, October 4, 15

Standard library abstract syntax tree handling
ast

‣ Generate AST from source code

‣ Modify copies of ASTs using
ast.NodeTransformer

18
Sunday, October 4, 15

Operators are responsible for actual AST modification
Operators

‣ Operators inherit from Operator which in
turn inherits from ast.NodeTransformer

‣ Operators are provided as plugins
‣ They have two primary jobs:

• Identify locations where a mutation can occur
• Perform the mutation open request

19

+

1 2

operator

-

1 2

Sunday, October 4, 15

Converts unary-sub to unary-add
Example operator: Reverse unary subtraction

20

class ReverseUnarySub(Operator):
 def visit_UnaryOp(self, node):
 if isinstance(node.op, ast.USub):
 return self.visit_mutation_site(node)
 else:
 return node

 def mutate(self, node):
 node.op = ast.UAdd()
 return node

Sunday, October 4, 15

Python provides a sophisticated system for performing module imports
Module management: overview

finders

Responsible for
producing loaders
when they recognize
a module name

21

loaders

Responsible for
populating module
namespaces on
import

sys.meta_path

A list of finders which
are queried in order
with module names
when import is
executed

Sunday, October 4, 15

Cosmic Ray implements a custom finder
Module management: Finder

‣The finder associates module names
with ASTs

‣ It produces loaders for those modules
which are under mutation

22
Sunday, October 4, 15

Cosmic Ray implements a custom finder
Module management: Finder

23

class ASTFinder(MetaPathFinder):
 def __init__(self, fullname, ast):
 self._fullname = fullname
 self._ast = ast

 def find_spec(self, fullname, path, target=None):
 if fullname == self._fullname:
 return ModuleSpec(fullname,
 ASTLoader(self._ast, fullname))
 else:
 return None

Sunday, October 4, 15

Cosmic Ray implements a custom loader
Module management: Loader

‣The loader compiles its AST in the
namespace of a new module object

24
Sunday, October 4, 15

Cosmic Ray implements a custom loader
Module management: Loader

25

class ASTLoader:
 def __init__(self, ast, name):
 self._ast = ast
 self._name = name

 def exec_module(self, mod):
 exec(compile(self._ast,
 self._name,
 'exec'),
 mod.__dict__)

Sunday, October 4, 15

Mutant isolation with multiple processes
multiprocessing

26

cosmic-ray

Process 1

Mutant 1

Process 2

Mutant 2

Process 3

Mutant 3

‣ Avoid cross-mutant interference

‣ Significantly simplifies spawning
processes

Sunday, October 4, 15

Actor model implementation in Python
pykka

27

‣ Simplify design

‣ Support concurrency

Sunday, October 4, 15

Event loop to drive actors
asyncio

28
Sunday, October 4, 15

Here's how we put all of these pieces together
Operational overview

1. Find test-runner to use

2. Identify modules for mutation

3. Find all of the operators to use

4. Lazily generate a sequence of mutated ASTs

5. For each mutant, run the tests
1.Each test runs in a new process

2.Each run manipulates its location sys.meta_path to inject the correct module
29

Sunday, October 4, 15

30

Demo

Sunday, October 4, 15

Up to a two line subtitle, generally used to describe the takeaway for the slide

31
Sunday, October 4, 15

32

Thank you!

@sixty_north

Austin Bingham
@austin_bingham

Sunday, October 4, 15

