

Rethinking Data for Intelligent Computing Julie Pitt (@yakticus)

Join the conversation #gotocph

Conference: October 5-6 // Workshops: October 7-8, 2015

Let us know what you think

> Click 'engage' to rate sessions and ask questions

how I got here

Jeff Hawkins

the problem

build machines capable of intelligent behavior

what makes us intelligent?

how does learning work?

what does this mean for AI and data?

The origin of the asymmetry [of time] we experience can be traced all the way back to the orderliness of the universe near the

big bang.

-SEAN M. CARROLL Scientific American, June 2008 The defining characteristic of biological systems is that they maintain their states and form in the face of a constantly changing environment.

> - KARL FRISTON Nature Reviews, February 2010

free energy principle

Karl Friston

intelligent agents resist entropy

all possible states

homeostasis (i.e., survival)

entropy = surprise (averaged over time)

intelligent agents minimize surprise?

surprise can't be measured*

free energy principle intelligent systems minimize free energy, which is an upper bound for surprise $F(\tilde{o}, \hat{s}, \hat{\pi})$ > $-\ln P(\tilde{o}|m)$ free energy surprise

how do we minimize free energy?

corollary to free energy principle

perception, action and learning are sideeffects of free energy minimization

- 1. form predictions \rightarrow perception
- 2. change the world \rightarrow action
- 3. form beliefs \rightarrow learning

demonstration

you perceived the dalmatian when you could explain it

the model is hierarchical

several levels of abstraction between senses and <u>"dalmatian" prediction</u>

how did your brain form the prediction?

- 1. form hypotheses
- 2. select best hypotheses
- 3. explain evidence

message passing

1. evidence used to form hypotheses 2. inhibition used to select best hypotheses 3. inferred causes used to explain evidence 2. inhibition 3. inferred 1. evidence cause

1. form hypotheses

- each node represents a belief
- belief = learned coincidence
 - e.g., frequent evidence of floppy ears, four legs and spots is caused by a dalmatian

1. form hypotheses

- beliefs invoked by evidence from below
 - more abstract (general) than evidence
 - formulates a hypothesis that the belief is

true

2. select best hypotheses

- related beliefs share connections
 - shared connections = common features
 - leads to conflicting hypotheses

2. select best hypotheses

- hypotheses with shared evidence compete
 strongest evidence + prediction wins
 - winners propagate, losers do not

3. explain evidence

- selected hypotheses that were predicted become inferred causes of evidence
- inferred causes form lower level predictions

hierarchical prediction

- high dimensional representation
 - leads to simultaneous predictions
 - allows parallel perceptions
- predictions fill in top to bottom
 - many tasks become subconscious

perception & free energy

perception is a side-effect of free energy minimization

evidence = free energy

 only prediction error is propagated forward

 fully explaining evidence minimizes free energy

 prediction = explanation of the future

how does action work?

active inference

- actions inferred using proprioception
- actions generated by prediction

action plan unfolds over time

time

action & free energy

action:

- minimizes free energy by changing the world to match predictions
- is perception of future motor states
- takes time
 - must be able to learn causes
 - temporal proximity

prediction error triggers learning

- evidence incorporated into beliefs
 - \circ better explain the world in future
- implemented as hebbian learning

learning & free energy

- learning alters beliefs
 - affords long term reduction of uncertainty (i.e., free energy)
- learning can be fast or slow
 - form new beliefs quickly
 - modify existing beliefs slowly
 - explains rapid learning during childhood

what does this mean for Al and data?

will computing as we know it cease to exist?

we'll still need today's computers

- von Neumann architectures excel at processing
 - add two floating point numbers
 - execute deterministic code
 - store and retrieve data
- intelligent machines will use computers

what will change an intelligent machine interacts with its environment using its sensors and

actuators...

...it learns through experience and leverages learnings to minimize free energy

who's the judge?

if you can construct a machine that can judge whether behavior is intelligent, you have solved the problem of intelligence

what might machines be capable of in the future?

go beyond human time scales

- "stretch" out time
 - e.g., wake up once per decade
 - observe long term consequences
- "compress" time
 - e.g., microsecond resolution
 - possess superhuman reflexes

explore new sensory dimensions

- live in virtual worlds, e.g.
 - sensing and reacting to internet traffic
 - control video game or VR character
- experience the world on a global scale, e.g.
 - weather patterns
 - seismic activity
 - financial markets

do the boring work

- with limitless attention spans, do tedious work
 - monitor a patch of sky
 - keep a lookout for intruders
 - construct detailed virtual worlds

develop communication

communication will emerge from experience

- result of learning to predict other agents
- full-blown language requires a rich model and significant horsepower

how does data need to change?

data needs to be in the present

- each sample taken "now"
 - data streams are parallel
- action is in the present
 - can't change the past
 - o can exploit coherence in time

data needs to inspire action

- sensory data format is free energy
 - encoding depends on the goal, e.g.
 - maintain temperature range → lots of free energy when "too hot" or "too cold"

data can be noisy

leave noise in naturally noisy sensors
 machines can infer even in presence of noise

data need not be human-readable

- machines can have sensors and actuators that interact with APIs
 - API data expressed as free energy
 - intermediate representation (e.g., prose, visualizations) not needed

01010100 01101000 01101001 01110011 0010000 01101001 01110011 00100000 01110100 01101000 01100101 00100000 01110100 01101001 01100001 01101110 00100000 01110100 01101111 00100000 01101100 01100010 01101011 00100000 0110110 00100000 01100101 0111001 0101110 00100000 01001001 0110001 01101110 01100000 01001001 0110001 01101110 01100000 01001001 00100000 01101000 01101101 0111001 01101110 01100000 01001001 00100000 011010000 01101101 01101010 011010000 01101101 01101010 01100000 0110110 01100101 01101100 01100101 01101010 01101100 00100001

data need not be labeled

- learning is unsupervised
 - need learning experiences, not training data
 - e.g., explore a maze containing some reward
- learning is online
 - no separate training period

data will flow through beliefs

- belief = memory & processing unit
 - high dimensional representation
 - new hardware architecture needed
- scalable intelligence
 - \circ add belief capacity \rightarrow increase intelligence
 - \circ clone beliefs \rightarrow crowd source

challenges

non-determinism

- results not reproducible
 noise adds non-determinism
 - each experience alters beliefs
 - actions affect the world

disadvantage in safety critical environments
 advantage in entertainment (e.g., gaming)

lack of transparency

- cause of actions not readily discernible
 - cannot set breakpoints
 - behavior may be surprising
- telemetry needed

 testing will give way to laboratory experiments

concern over threat to humans

- safeguards needed e.g.,
 - unshakable belief that humans will not be harmed
 - harm leads to overabundance of free energy

still a long way off

further reading

- <u>selected papers</u> by Karl Friston
 - e.g., <u>Free Energy Principle</u> review paper
- toy implementation in Scala
 - hebbian learning implementation (no prediction or action)
 - inspired by <u>Numenta/NuPIC</u> (open source project based on biology)

thanks! any questions?

julie@oomagnitude.com

Remember to rate this session

Thank you!

Let us know what you think)