
The Internet of
Programmable Things

Kasper Lund

Background

Kasper Lund, software engineer @ Google

Projects:

- OOVM embedded Smalltalk system
- V8 high-performance JavaScript engine
- Dart structured programming for the web

An explosion of devices

number of cellphones today

IoT: Internet of things

- sense: data is gathered, processed and transmitted
- transport: data passes over various networks
- store: information is gathered and stored
- analyze: insights are extracted and presented
- control: based on insights alerts are sent or devices take action
- share: data is exchanged with other systems

Verizon, “State of the Market, The Internet of Things”, 2015.

Devices for sense and control

microcontroller (MCU)

microprocessor (MPU)

Prototypical microprocessor

- Raspberry Pi 2: Model B
- ARMv7 Quad Core Processor @ 900 MHz
- 1 GB of RAM
- Plenty of Flash through external MicroSD-card
- Price: ~45 USD

- Runs a variety of operating systems
- Linux (e.g. Raspbian), RISC OS, FreeBSD, NetBSD, Plan 9, Inferno, AROS
- Even Windows 10 IoT Core

Prototypical microcontroller

- STM32F7: high-performance MCU with ARM Cortex-M7 core
- 32-bit ARM CPU @ 216 MHz
- 320 KB of RAM
- 512-1024 KB of Flash
- Single precision FPU and no fancy MMU
- Price: ~12 USD in low quantity bulk

our focus

can i haz
embedded

linux?

you mean
uClinux?

do you
have 4MB
of RAM?2-3MB of

Flash?

What are we left with?

Best case scenario

Let me tell you what I really want

Let me tell you what you really need

You need an accessible platform

... that seems instantly familiar to the masses

... based on a high-level, managed language

... to make devices programmable by everyone

You need a productive environment

... with solid support for static analysis and code completion

... and a rich ecosystem of support functionality in libraries

... to allow developers to build great things quickly

We all need an open, serviceable platform

... that provides safety guarantees for upgradable components

... that allows independently developed code to co-exist

... in a new era of truly extensible and configurable devices

So all we need is ...

... a modern, familiar, managed, high-level language

... with tools for static analysis, code completion, and navigation

... and libraries for specific microcontrollers and peripherals

... that supports modular serviceability so code can be changed

... and all of it should fit on small microcontrollers

Dart

void main() {

 var greetings = “Hello, World”;

 print(greetings);

}

try for yourself by visiting dartpad.dartlang.org

MCU + ?
does Dart run on microcontrollers at all?

Sneak peek of the Fletch project

Characteristics

- small and light
- productive and serviceable
- simple and accessible

What takes space in a virtual machine?

- source-code compiler
- execution engine
- object model
- garbage collector
- debugging support

Interface between compiler and runtime

push new class

assign id 7409

pop

runtime

compiler

7409

...

Reflection over wire protocol

- set up the program structure
- push new class
- push new method

- change the program structure
- change method table
- change schemas

- debug the running program
- set breakpoint
- restart activation

The runtime is a small, stack-based
machine driven from the outside

by the compiler.

Optimizing dynamic dispatching
(super short interlude)

Dynamic dispatching

B
foo

B
foo

A
bar

A
bar

C
bar

A
bar

D
baz

A B C D

foo

bar

baz

class A {
 bar();
}

class B extends A {
 foo();
}

class C extends B {
 bar();
}

class D extends A {
 baz();
}

Selector-based row displacement

B
foo

B
foo

A
bar

A
bar

C
bar

A
bar

D
baz

A
0

B
1

C
2

D
3

foo

bar

baz

A
bar

A
bar

C
bar

A
bar

B
foo

B
foo

D
baz

foo offset = 3

bar offset = 0

baz offset = 4

0 1 2 43 5 6 7

Selector-based row displacement

- guaranteed constant time dynamic dispatching
- table is precomputed and part of the application snapshot
- takes up 10-17% more space than vtables

Programming model

Programs and processes

Embedded RTOS

Program A Program B Program C

(idle)

Fletch runtime

Light-weight processes

- small memory footprint (~4K)
- can be blocked without taking up system resources
- run in parallel if you have enough cores

Handle connections in new processes

var server = new ServerSocket("127.0.0.1", 0);

while (true) {

 server.spawnAccept((Socket socket) {

 // Runs in a new process.

 socket.send(UTF8.encode(“Hello, World”));

 socket.close();

 });

}

Blocking messaging

final channel = new Channel(); // A channel is a queue of messages.

final port = new Port(channel); // A port is the capability to send to a channel.

Process.spawn(() {

 int i = 0;

 while (true) port.send(i++);

});

while (true) print(channel.receive());

too easy?
the only messages sent between processes are integers...

Shared state concurrency

- any object can be sent as a message without copying
- multiple processes can operate on the objects in parallel
- lots of explicit synchronization primitives

Shared immutable state concurrency

- any deeply immutable object can be sent as a message without copying
- multiple processes can operate on the objects in parallel
- no need for explicit synchronization primitives

one more thing
can a process wait for more than one thing?

Fibers!

void publishOnChange(Socket socket, String propertyName, Channel input) {

 int last = 0;

 while (true) {

 int current = input.receive();

 if (current != last) socket.send(UTF8.encode(‘{ “$propertyName”: $current }’));

 last = current;

 }

}

Fiber.fork(() => publishOnChange(server, “temperature”, temperatureSensor));

Fiber.fork(() => publishOnChange(server, “humidity”, humiditySensor));

All that on an embedded device...

Fletch SDK for Raspberry Pi 2

http://dart-lang.github.io/fletch/

Warning: This is early access!
(version 0.1)

Running code

$ fletch run samples/general/hello.dart

Hello from Darwin running on kasperl-macbookpro.

$ fletch run samples/general/hello.dart in session remote

Hello from Linux running on raspberrypi.

Blinking lights on the Raspberry Pi 2

import 'package:gpio/gpio.dart';

import 'package:os/os.dart';

const int PI_ONBOARD_GREEN_LED = 47;

main() {

 var gpio = new PiMemoryMappedGPIO();

 gpio.setMode(PI_ONBOARD_GREEN_LED, Mode.output);

 for (bool enabled = true; true; enabled = !enabled) {

 gpio.setPin(PI_ONBOARD_GREEN_LED, enabled);

 sleep(500);

 }

}

TL;DR

The world needs more productive
embedded developers

Too many developers lack the
skills to target embedded devices

Productivity is higher with great
tools and managed languages

Managed languages that fit on
microcontrollers soon include Dart

Which device are you going to
hack on next?

