
HIGH PERFORMANCE TRADING APPLICATIONS USING

HTML5
MICHEL ANDRÉ
CTO

MAN@SAXOBANK.COM
@michelandre71

AGENDA

• Saxo Bank Primer: Setting the Scene
• Why application performance

matters
– Defining “performance”.

• Factors affecting performance
– Real and self-imposed

constraints
• Case-Study

– Presenting SaxoTrader GO
– Walk through of architectural

& technical choices
(Magically it ended up with 7
steps to….)

SAXO BANK: SETTING THE SCENE

EMPLOYEES >1300

NATIONALITIES 59

SPOKEN LANGUAGES IN THE BANK 40

OFFICES 25 countries

NO. OF FX TRADES PER DAY 170,000

MAX NO TRADES/SECOND >1300

MAX NO PRICES/SECOND >400 000

DAILY AVERAGE TURNOVER 100 billion DKK

NO. OF COUNTRIES WITH RETAIL CLIENTS 190

SAXOTRADER LANGUAGES 25

GROSS PROFIT <15 cents per 1,000 USD traded

FINANCIAL INSTRUMENTS more than 30,000

RECEIVED PRICES PER DAY 5-6 billion

MAX CONCURRENT USERS ~15.000.

SAXO BANK TECHNOLOGY & BUSINESS MODEL

PROVIDER
OF PRICES

AND
PRODUCTS

SAXO BANK
CLIENTS

12
Large International

Banks

50
Exchanges

NASDAQ, NYSE, OMX, LSE,
GLOBEX, EUREX, ETC.

25
Other Trading

Facilities
CHI-X, TURQUOISE, ETC.

SAXO BANK’S
ONLINE

TRADING
PLATFORM

Private

White Label Clients
BANKS, BROKERAGES, ETC. USING
SAXO BANK’S TRADING PLATFORM

Institutions/
Corporates

ASSET MANAGERS, FINANCIAL
ADVISORS, INTRODUCING BROKERS

PERFORMANCE… AND WHY IT MATTERS..

PERFORMANCE

• Response Times: The 3 Important Limits: (Jakob Nielsen 1993)
– 0.1 second: the limit for the user feeling that the system reacts

instantaneously
– 1.0 second: the limit for the users flow of thought.
– 10 seconds: the limit for keeping the user’s attention.

• Amazon reports 100 ms in page load time cost 1% in sales (2006).
• Google experiment showed 0.5 s increased delay causes 20% drop in traffic.

(2006)
• Nearly 60% of web users say they expect a website to load on their mobile

phone in 3 seconds or less… 50% are willing to wait 5 seconds or less for an
application to load before exiting (Compuware, 2011)

• Tabb group on trading systems: 5 ms latency could result in 1% drop in flow.
(2008)

Liquidity

Liquidity

Liquidity

Liquidity

Liquidity

1.07546/1.07566

1.07546/1.07566

TRADING CURRENCY – TRADING ON QUOTE

TRADING CURRENCY – TRADING ON QUOTE

Liquidity

Liquidity

Liquidity

Liquidity

Liquidity

1.07546/1.07566

1.07546/1.07566

BUY 25.000
EURUSD @1.07566

TRADING CURRENCY – TRADING ON QUOTE

Liquidity

Liquidity

Liquidity

Liquidity

Liquidity

1.07546/1.07566

1.07546/1.07566

BUY 25.000
EURUSD @1.07566

SO FOR US PERFORMANCE MEANS

And remember people are trading with real money in fast moving
markets, so psychologically they must also feel that they have the
best tool and control.

(Price) Latency: User can accept the latest price, so his trade will not
get rejected (~300-500 ms).

Application Load Time: From starting app (hitting URL) to login completed and
app ready:
Fast enough to keep the client around. (<5 s).

UI Responsiveness: Visual feedback on user action in application, it should
feel immediate (~100 ms).
--- but scrolling must also be smooth (~40 mS)

System Responsiveness: Visual feedback on user action involving whole system
(such as order confirmation) (<< 1s).

FACTORS AFFECTING PERFORMANCE (PHYSICAL)

Liquidity

Copenhagen

Liquidity

Liquidity

Liquidity

New York

Singapore

Sydney

Copenhagen

Singapore

Sydney• Connect….
• Fetch login page
• Login
• Fetch Application
• Fetch User Data
• Start Trading

0 km ~ 0 ms round-trip

9996 km ~ 67 ms round-trip

15992 km ~ 107 ms round-trip

*) Unrealistically best case J based on speed of light in direct point to point.

Copenhagen

FACTORS AFFECTING PERFORMANCE (SELF IMPOSED)

Strategic decision to build on REST based
OpenAPI – and dogfood Speed

APX”Purity”

§ Need to support White Label Customizations (Logos, Layouts,
Configurability)

§ There is significant business logic in the application and we cannot afford to
build both a web and multiple native applications.

§ And keep them updated!

CASE STUDY SAXOTRADER GO…

AN APPLICATION WITH MANY FAST CHANGING ELEMENTS..

WHAT HAPPENS?

Request to load application DNS, SSL
Connect Receive App

Receive
referred
resource

DNS, SSL
Connect

DNS, SSL
Connect

Receive
referred
resource

Receive
referred
resource

Connect to service layer User Data

DNS, SSL
Connect Streaming

Subscribe to data

Now the application is ready

CURE 1: GET RID OF THE WEB SERVER

• Traditionally	slow	as	we	depend	on	
dynamic	data

• Often	hard	to	cache
• We	can’t	get	rid	of	the	 latency	to	the	

data	center

OutputWeb-
request

Pre	build	package	of	
html/js/css

App	separated	out	from	dynamic	data

• Very	fast	as	it	is	just	static	resources
• Caches	well	at	multiple	stages:	Server,	

CDN	Edge	Node	and	in	browser	cache	
locally.

OutputWeb-
request Building	web	page

DB Service

Traditional	Web	Page/App	Delivery

CURE 2: USE A CDN WITH SSL OFFLOADING
• Large application vs small sets of dynamic data
• Initial load of application depends on range of network related factors

– DNS, connect time, SSL connection time, Network package negotiation (TCP
Initial Window Size)

– Power Save on phones is a separate problem
– The network route to your servers may not be the most efficient possible
– Prefetch may “warmup” connections.

<link rel=“prefetch”
href=https://streaming.saxotrader.com/openapi/isalive”>
Hack J and not always supported where you need it the most.

• Engaging with a CDN can “auto” solve a lot of these issues

CURE 2: USE A CDN WITH SSL OFFLOADING

CURE 2: USE A CDN WITH SSL OFFLOADING

Trading

CURE 3: USING STREAMING TECHNOLOGY TO PUSH OUT
UPDATES

Open API
Servers

High performance message bus
Internal
Network

Request

Response

SubscribeSnapshot

Deltas from Snapshot
are calculated & streamed

Stream of Δs

D

Ref Data Performance Portfolio

Streaming
Servers

CURE 4: COMPROMISING ON RESPONSIVE DESIGN

You want to optimize for download size
You want to optimize for number of http
requests
You can make a website look nice across all
devices with RWD

– Do you want to load CSS for all platforms always?
– Is it really the same app scaled down/up or a different one

built from the same building blocks?
– If you have a lot of code you may have to have different

delivery approach depending on what the consuming device
can handle, reducing the benefit of RWD

We have chosen to have 3 different
applications bundled for desktop, tablets and
phones

– RWD ensures that we handle the different form factors within
each category

Often understood as:
• Have CSS rules for scaling (and rearranging UI

elements)
• Conditionally load images/icons of different size
• Have one code base that dynamically scales

EXAMPLE 1: SAXOTRADER GO FOR DESKTOP

EXAMPLE 2: SAXOTRADER GO FOR MOBILE

User defined watch-list Positions in the market

Charts and financial studies

THROUGHOUT THIS… REMEMBER THE Y-SLOW RULES. *

*) http://yslow.org/

And remember, there
is always a balance J

Also remember:
• This is hard work…
• But it pays off

CURE 5: USE THE APPLICATION CACHE
• Intended for “offline” applications
• We use it to cache the entire static part of the

application
• It performs better because all the application has to

do is check whether there are changes to the
manifest file, rather than all other resources

• NOTE: Hard to force update a cached application.
The user can get stuck

• We receive a lot of updates from the server
• The user needs to be able to interact with the application instantly
• Updating the DOM is expensive. Even more so if it involves layout
• Do you know the framerate your application can maintain?
• Remember the chart? It represents completely different challenges

CURE 6: TREAT THE APPLICATION AS IF IT WAS A GAME J

CURE 6: TREAT THE APPLICATION AS IF IT WAS A GAME J

CURE 6: TREAT THE APPLICATION AS IF IT WAS A GAME J

CURE 6: TREAT THE APPLICATION AS IF IT WAS A GAME J

CURE 6: TREAT THE APPLICATION AS IF IT WAS A GAME J

CURE 7: MEASURE CONTINUOUSLY AND IN DEPTH

Externally using Dynatrace

CURE 7: MEASURE CONTINUOUSLY AND IN DEPTH

Externally using Dynatrace

In App using custom tools

CURE 7: MEASURE CONTINUOUSLY AND IN DEPTH

Externally using Dynatrace

In App using custom tools

At API layer using LogParser + inhouse tools

CURE 7: MEASURE CONTINUOUSLY AND IN DEPTH

Externally using Dynatrace

In App using custom tools

At API layer using LogParser + inhouse tools

In Conclusion:
Performance is critically important, especially in trading
applications
The combination of HTML5 and (Open)API’s is attractive from
a business and technology perspective.
Building a high performance HTML5 application is entirely
possible!
But you must make some architectual decisions (such as push
technology)
And you must pay attention to detail. All the time.

