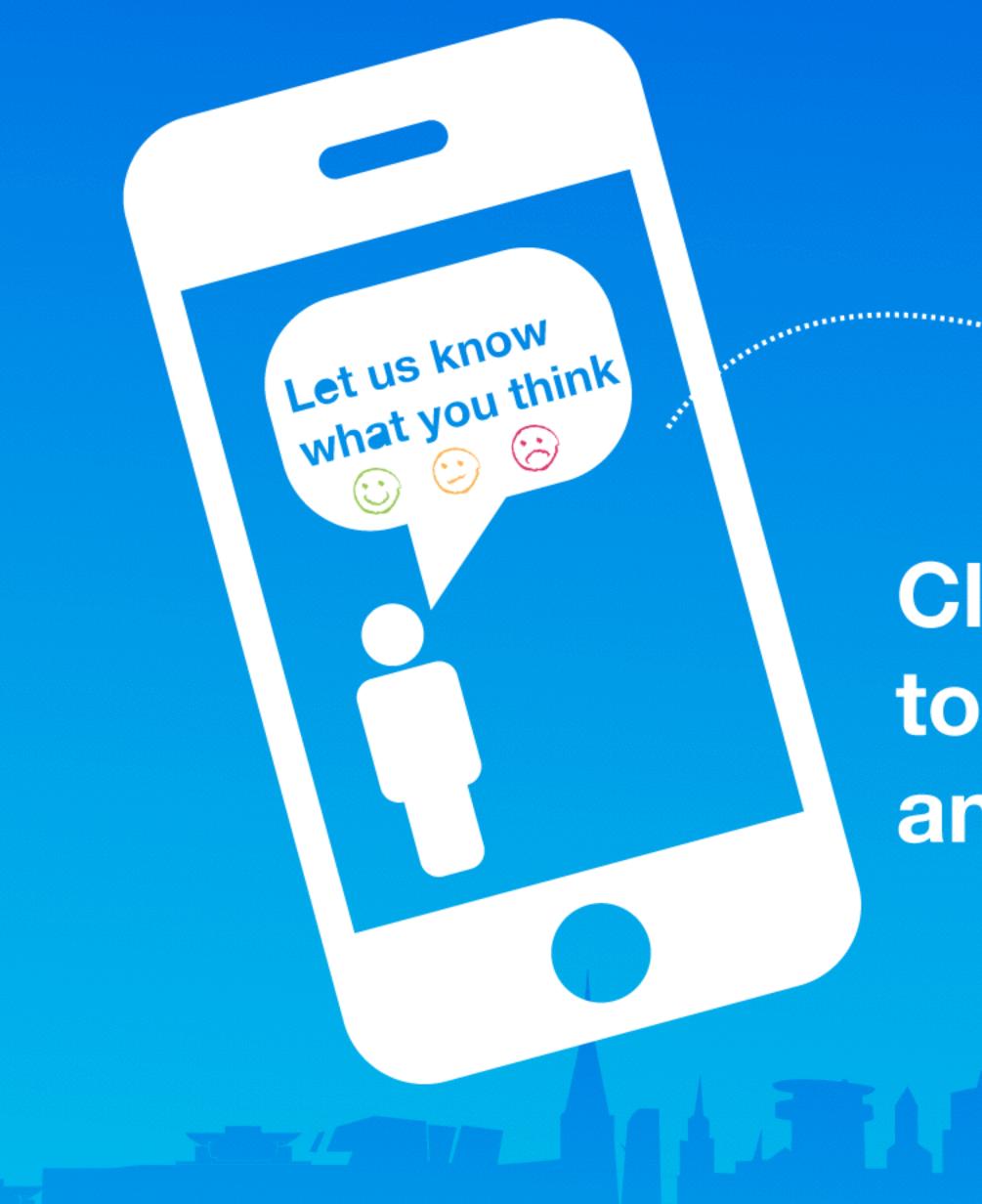
Modern Fraud Prevention using Deep Learning

Phil Winder

1430 CET Scandic Grandball6th October 2015

<u>N</u>



Join the conversation #gotocph

Click 'engage' to rate sessions and ask questions

<u>N</u>

Introduction

Engineer at Trifork Leeds

Current project: Elasticsearch framework for Apache Mesos

pnw@trifork.com @DrPhilWinder

Line Christa Amanda Sørensen

- Group COO
- las@trifork.com

Phil Winder

Tom Benedictus

- Trifork Leeds CEO
- tob@trifork.com

make We apps

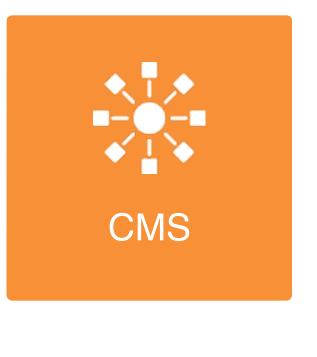
Trifork

- 30+ companies worldwide
- 400+ employees 30,000,000+ revenue \bullet



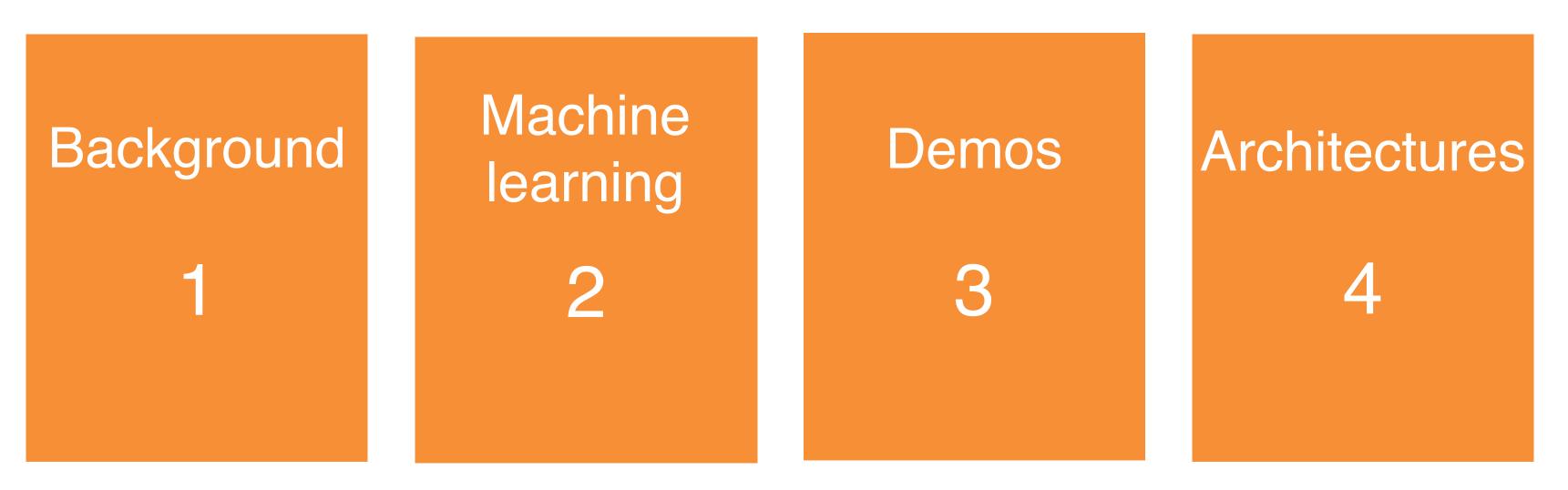
6,000+ attended our conferences in 2014

Trifork in finance and beyond





Outline



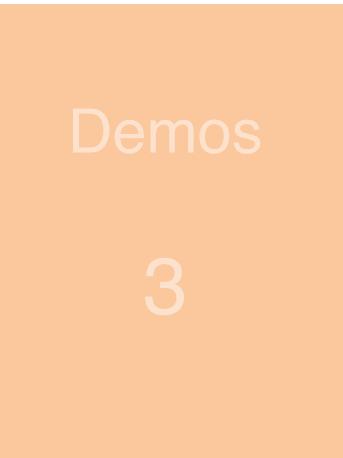
https://github.com/philwinder/MortgageMachineLearning

Introduction

Background

1

Machine learning 2



Architectures

4

Introduction: Financial cr

Serious Fraud Office

"Put simply, fraud is an act of deception intended for personal gain or to cause a loss to another party."

UK *Mortgage* Fraud

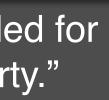
1.2 Million residential properties sold in 2014 [1]

"83 in every 10,000 mortgage applications were found to be fraudulent" [2]

Approximately **£1B** in fraudulent applications. [3]

- [1] https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/461354/UK_Tables_Sep_2015___cir_.pdf
- [2] http://www.experian.co.uk/blogs/latest-thinking/dramatic-increase-current-account-fraud/
- [3] <u>http://www.moneywise.co.uk/news/2013-05-16/average-outstanding-uk-mortgage-100000</u>
- [4] http://www.retailfraud.com/fraud-costs-uk-smbs-18bn-a-year/

me



UK Current account fraud

"151 in every 10,000" [2]

"69% due to identity theft" [2]

UK Retail fraud

"SMBs are losing £18bn every year to fraudulent transactions" [4]

Introduction: Legislation

2017 AML legislation

- Businesses: credit, finance, legal and
- Major changes:
 - 1,000 EUR
 - Must prove "due diligence"
 - information

[1] DIRECTIVE (EU) 2015/849 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 20 May 2015 on the prevention of the use of the financial system for the purposes of money laundering or terrorist financing, amending Regulation (EU) No 648/2012 of the European Parliament and of the Council, and repealing Directive 2005/60/EC of the European Parliament and of the Council and Commission Directive 2006/70/EC

financial services, gambling, anyone facilitating transactions over 10,000 EUR

• Maximum "out of scope" limit dropped to

Public central registry of business

Introduction: Common technologies

Origination based

Verifies identity. Some practices are very poor, e.g. services verifying identity using DOB.

Static set of rules searching for very specific patterns. Very poor accuracy.

Expensive services that aim to provide risk profile. Fraudsters are easily able to overcome credit checks.

Aggregation and monitoring

A reactive, but worthwhile solution. E.g. many payments from same account, large transactions, etc.

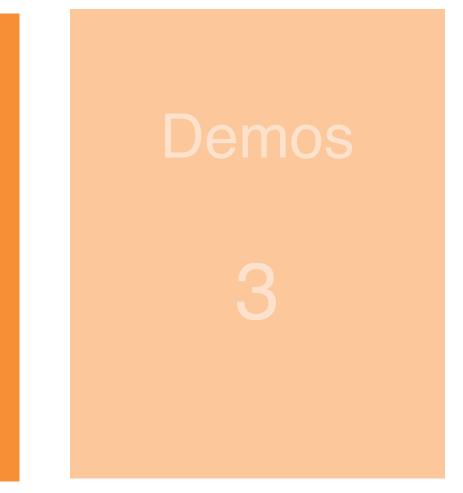
Rules based

Credit checks

Machine Learning

Background

Machine learning 2



Architectures

4

ML: How humans learn

How do we learn?

Time

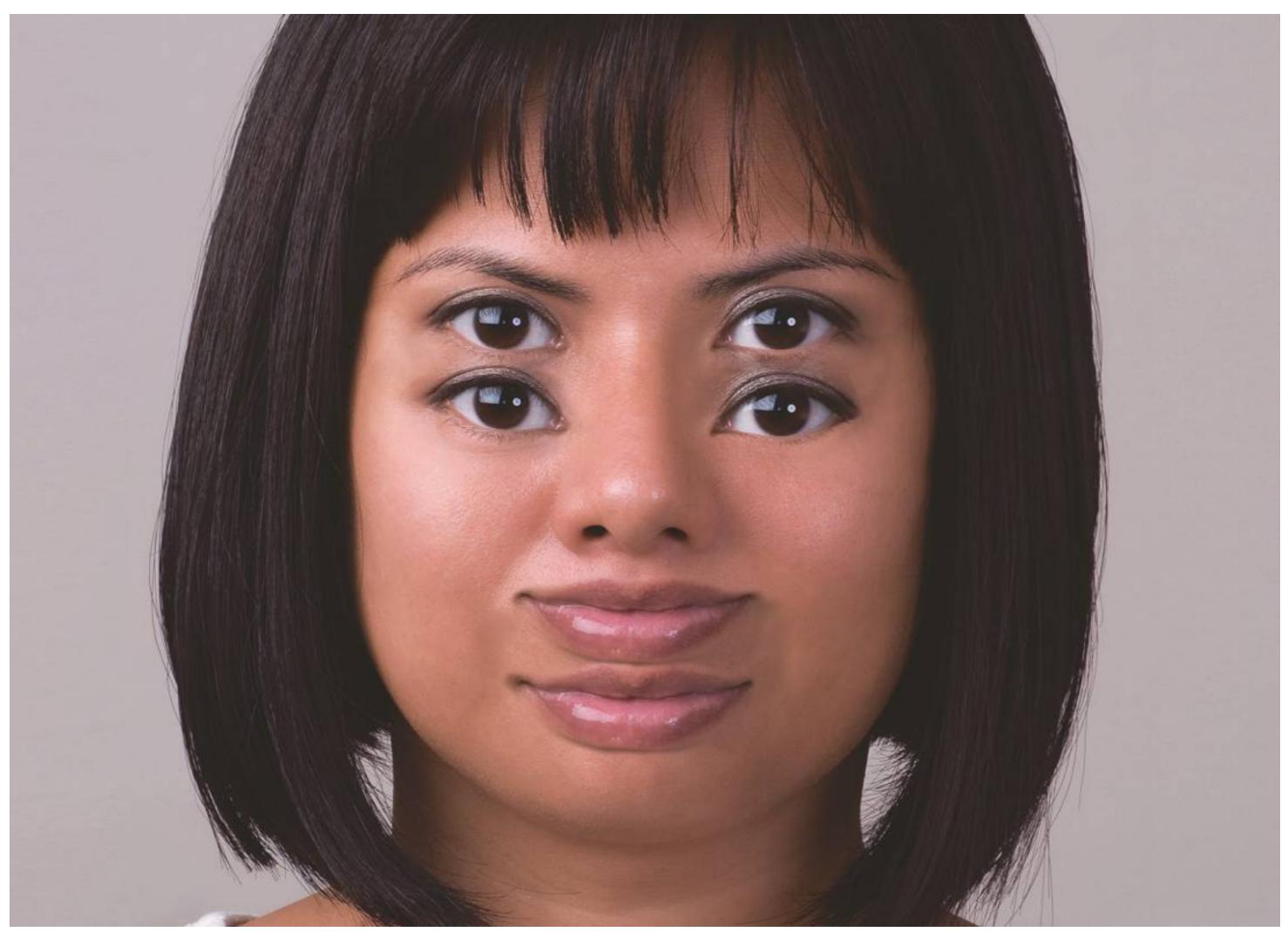
Many diverse tasks But it takes time

Practise

Requires practise Repetition of tasks New examples

ML: How humans get it wrong

ML: How humans get it wrong



http://visitcanberra.com.au/events/9005967/perception-deception

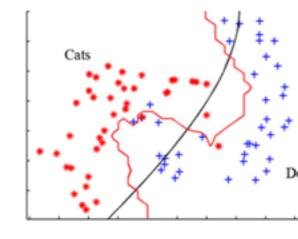
ML: Main categories of algorithms

Dimensionality reduction

Curse of dimensionality Reduce number of inputs

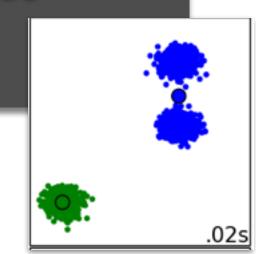
Classification

Decide to which class an input belongs



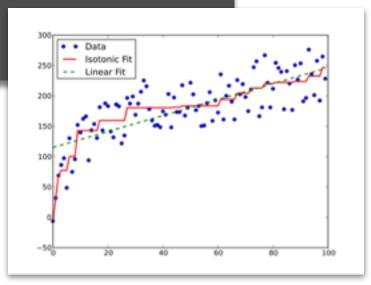
Clustering

Assign output to a class



Regression

Predict value given input



ML: Supervised vs. Unsupervised

Supervised

Expected result is provided

Algorithm is trained to produce the correct result

New data is classified according to the training

Some results are provided

Users interact with unsupervised data to find new results

Training

Unsupervised

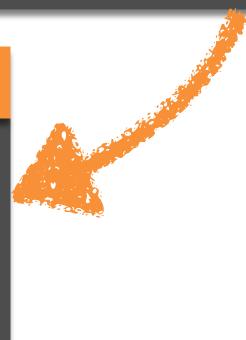
No result is expected

Algorithm is trained so that:

- Similar data are "close"
- Dissimilar data is "far"

Generally, new data is specified as belonging to a group

Semi-Supervised



ML: Decision trees

What are they?

Classifier & Regression

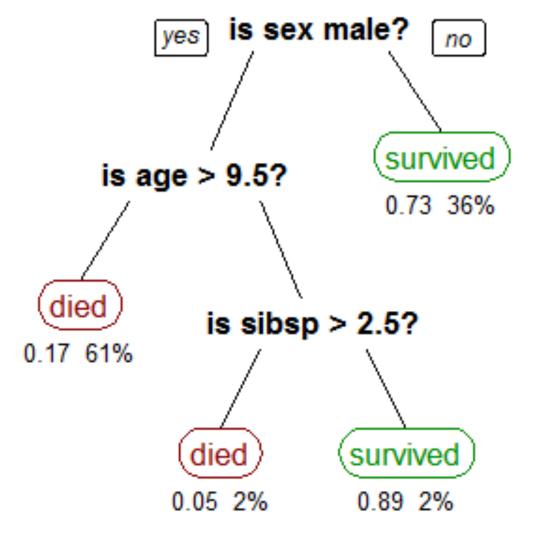
Predict value of target by learning simple decision rules

Pros & Cons

Conceptually simple

Handle categorical data

Overfitting



https://en.wikipedia.org/wiki/Decision_tree_learning

ML: Deep learning

What is deep learning?

What is it?

Dimensionality reduction, classifier, regression & clustering.

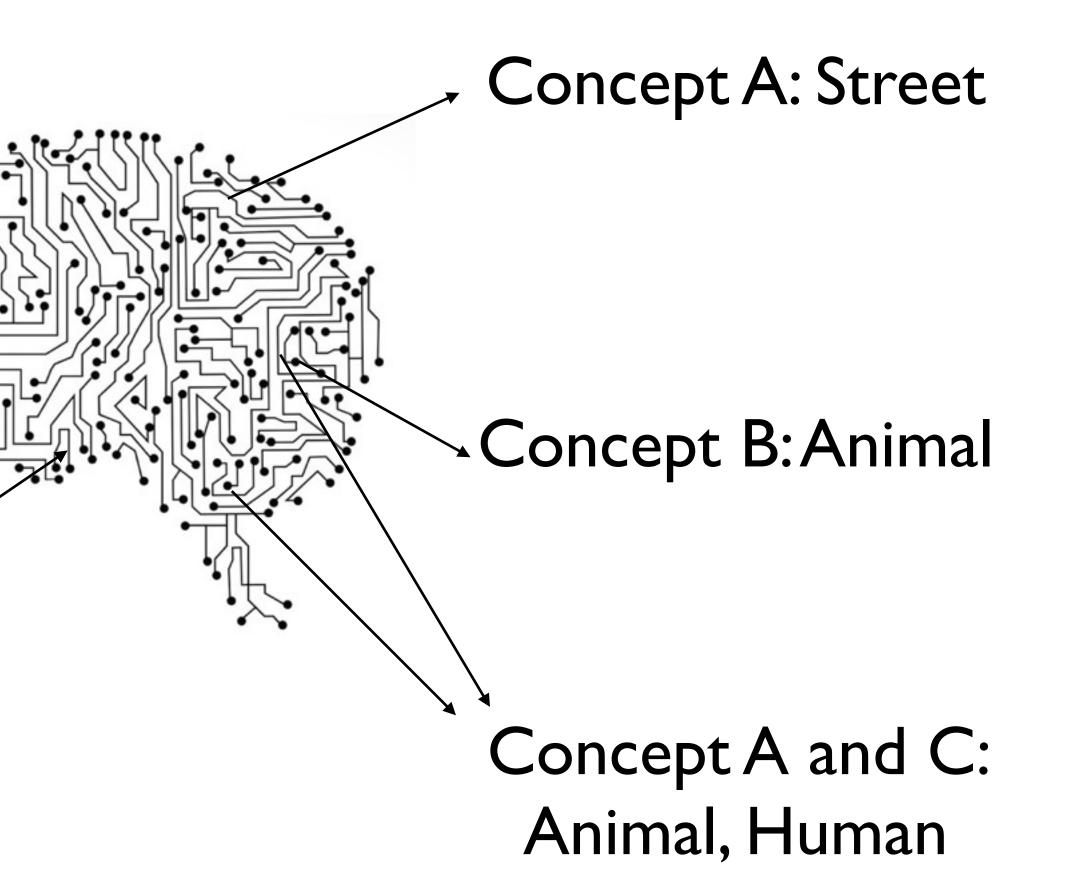
Attempts to mimic human brain. Modelled by neurons and weights.

Pros & Cons

- Versatile
- Automated feature
 engineering
- Hard to visualise

ML: Deep learning

What is deep learning?

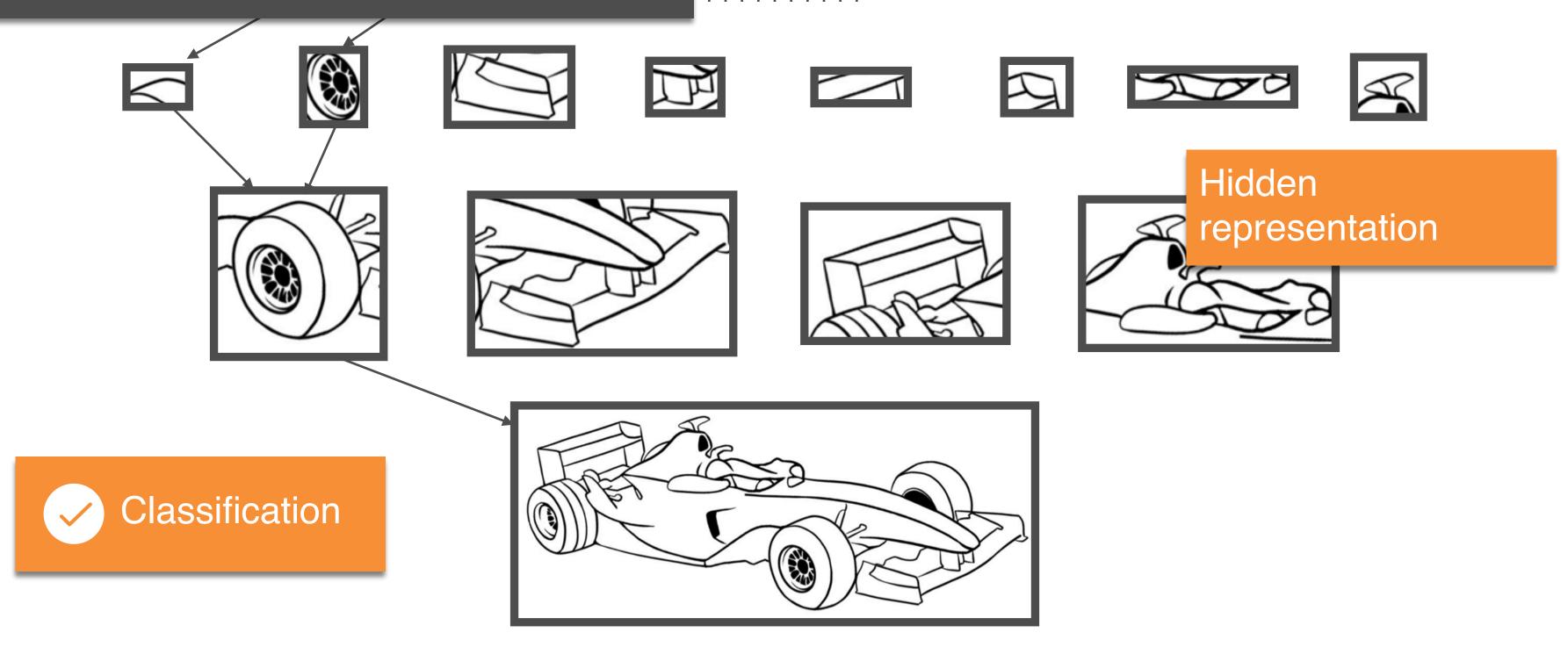


ML: Deep learning

A simple graphical example

How does it work?

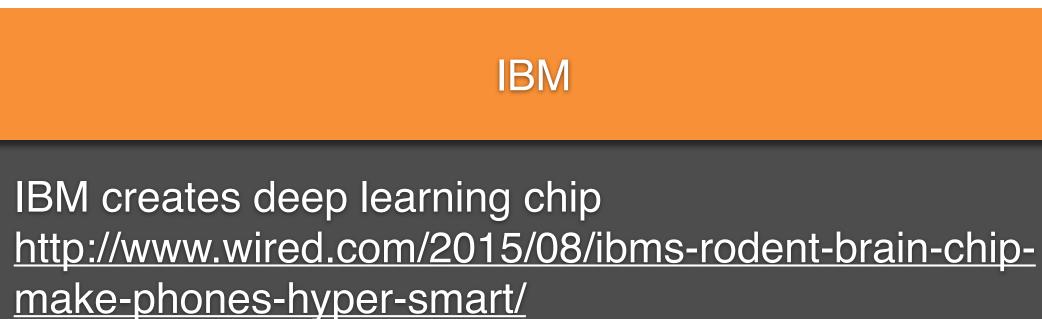
Attempts to model high level abstractions
 using a cascade of transformations



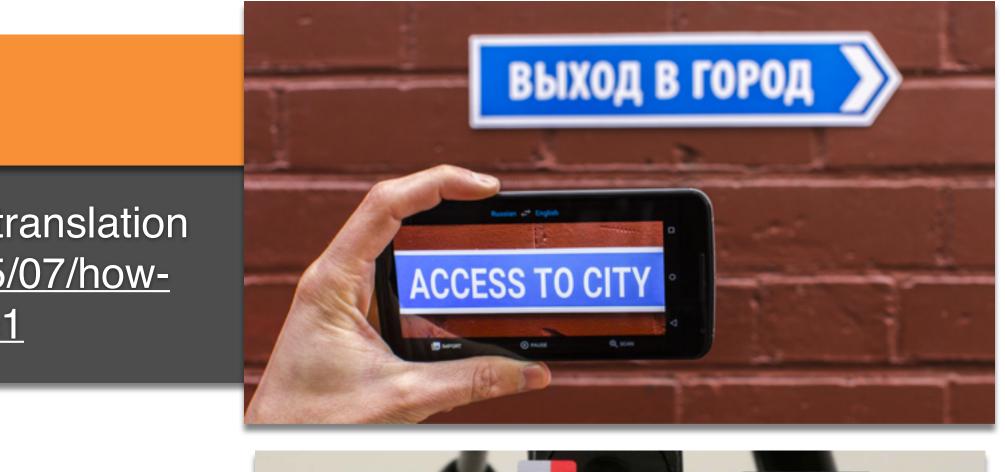
Machine Learning (ML)

"Machine learning explores the study and construction of algorithms that can learn from and make predictions on data." [1]

- Google uses deep learning in phones for translation
- <u>http://googleresearch.blogspot.co.uk/2015/07/how-google-translate-squeezes-deep.html?m=1</u>



[1] Ron Kohavi; Foster Provost (1998). "Glossary of terms". Machine Learning 30: 271–274.



A simple graphical example

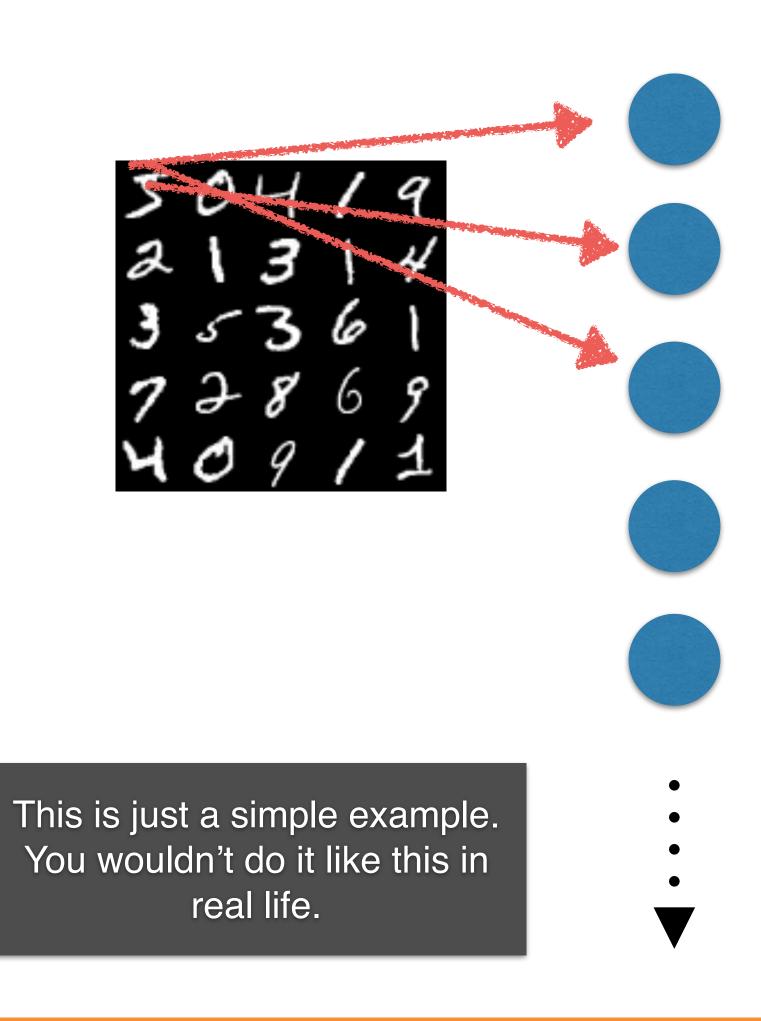
http://keras.io/

A simple graphical example

Is it a 3 or a 5?

A simple graphical example

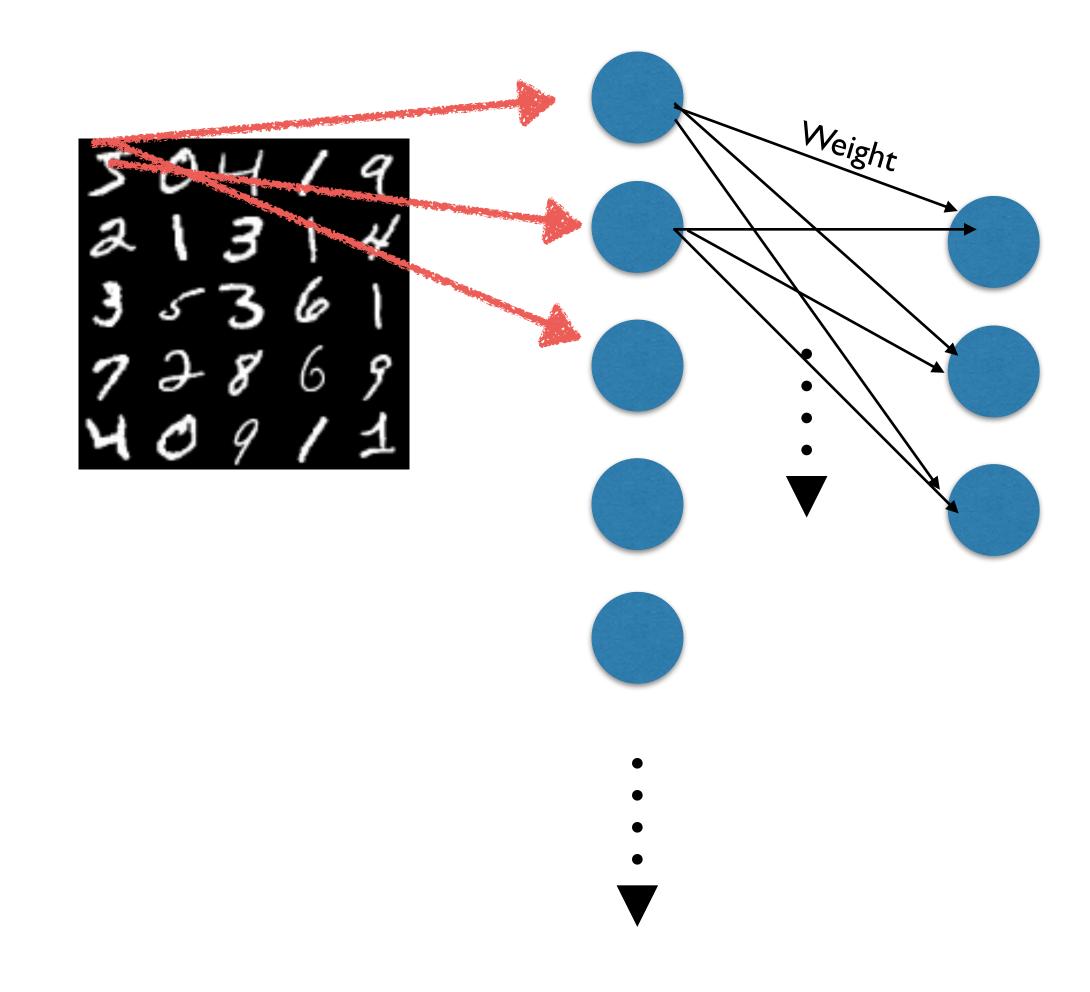
Input layer



Each pixel is mapped to an input neuron

A simple graphical example

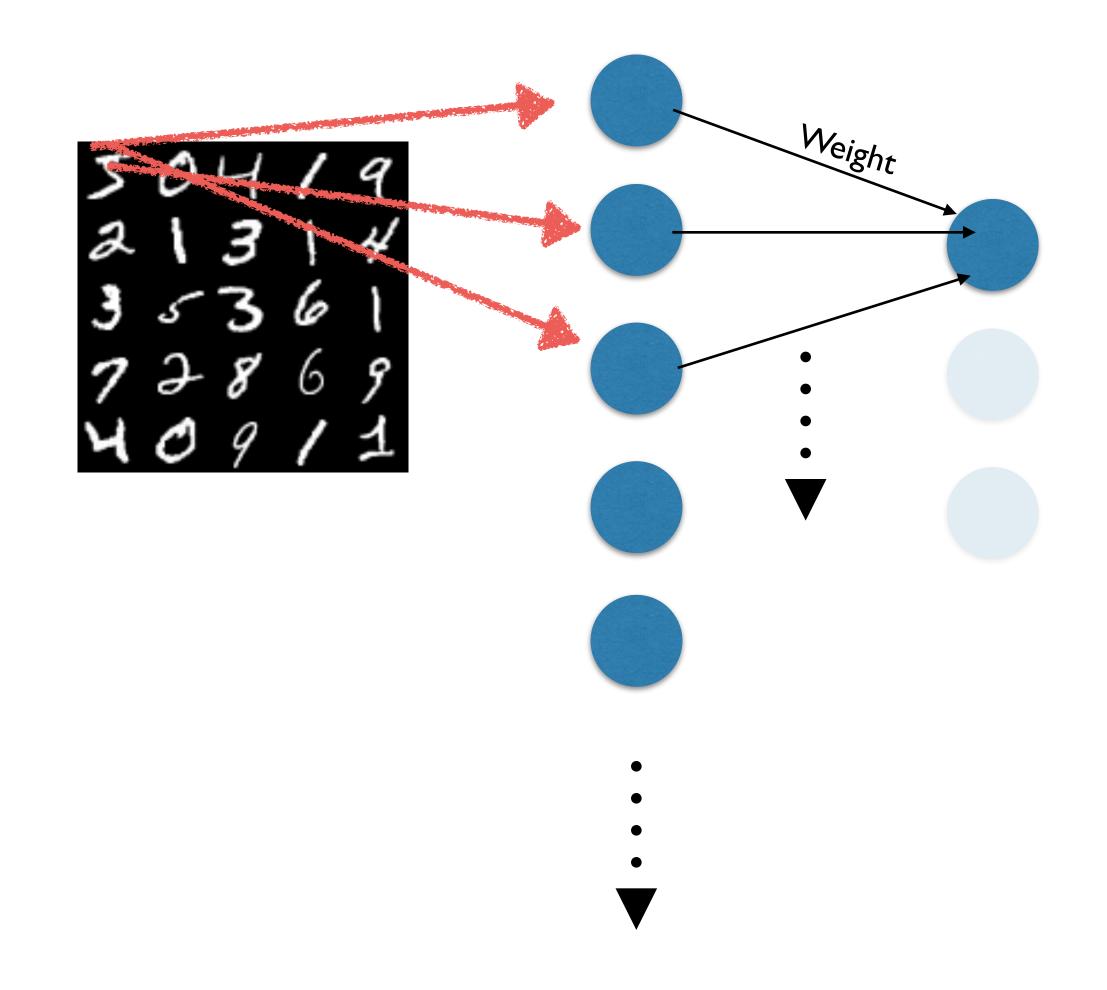
Input layer



Hidden layer

A simple graphical example

Input layer

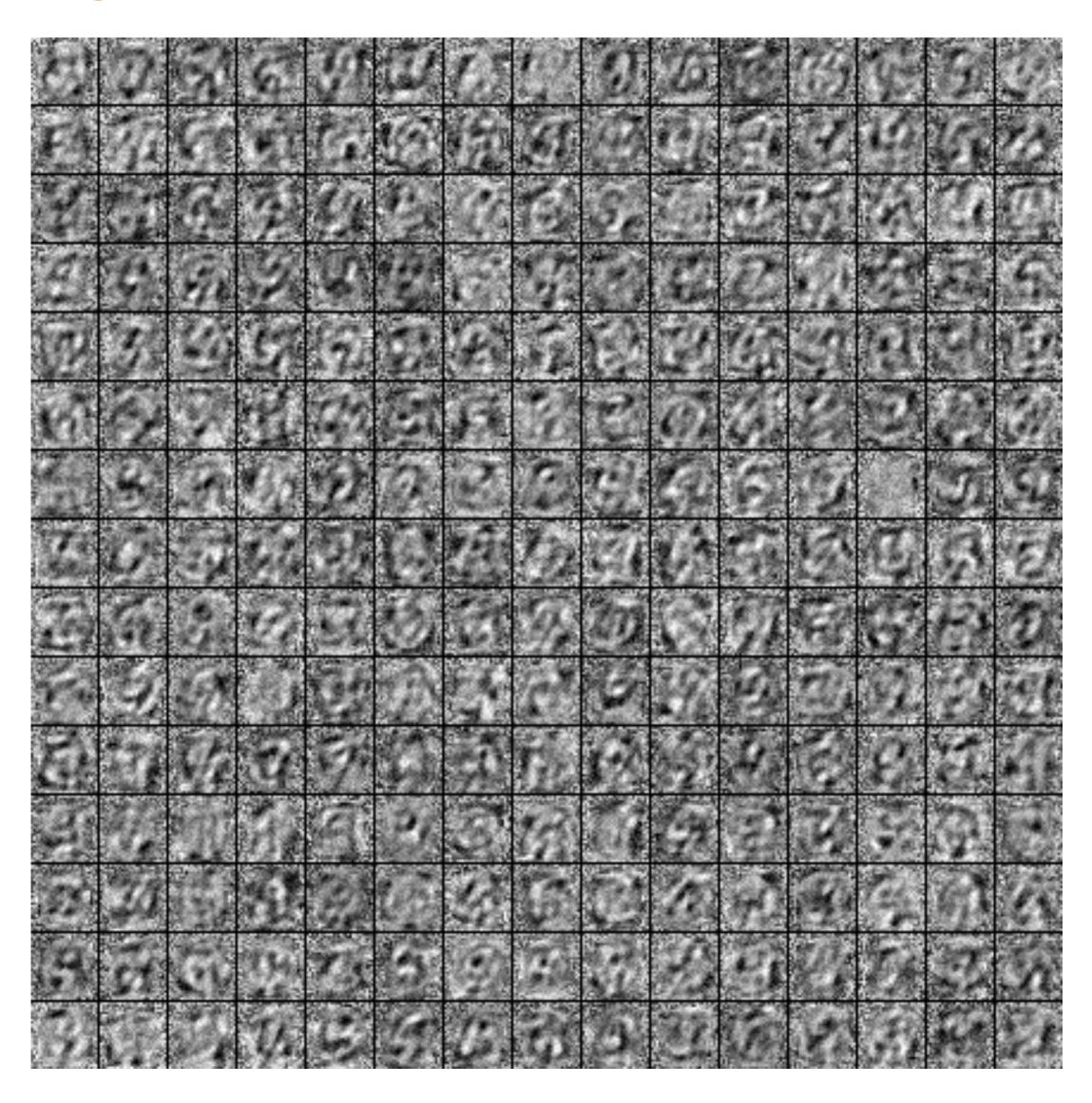


Hidden layer

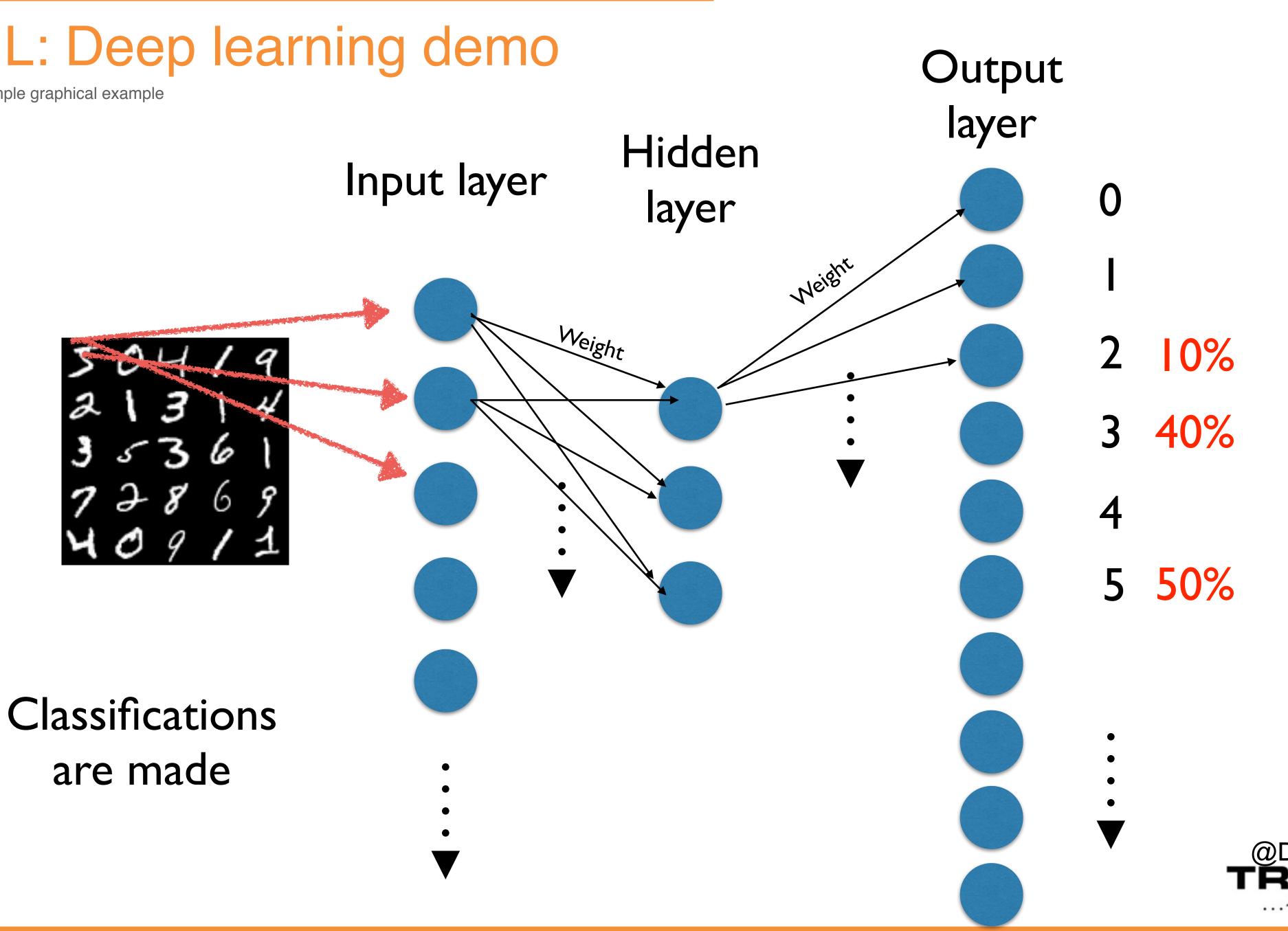
Features are learned

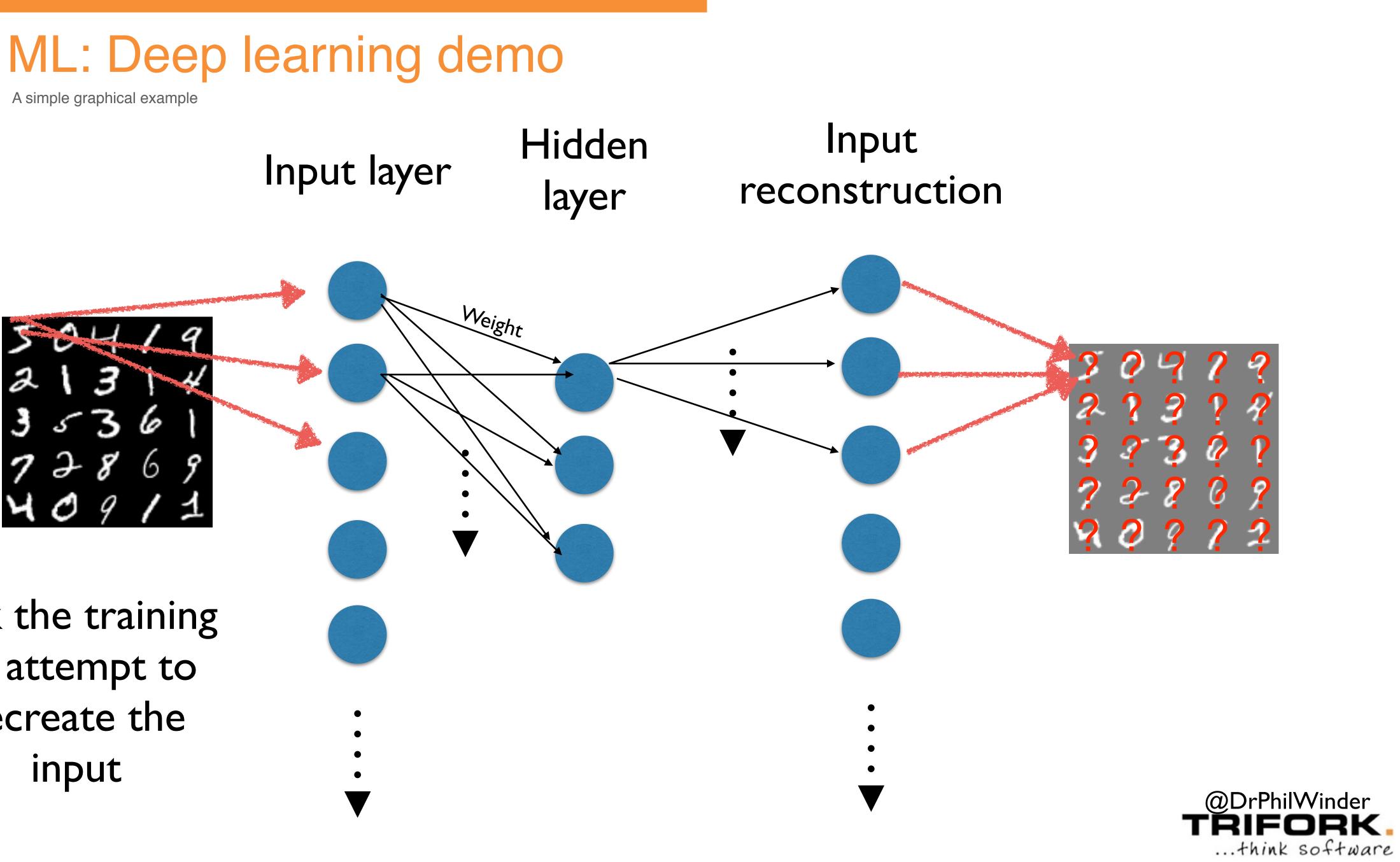
A simple graphical example

Visualise the features



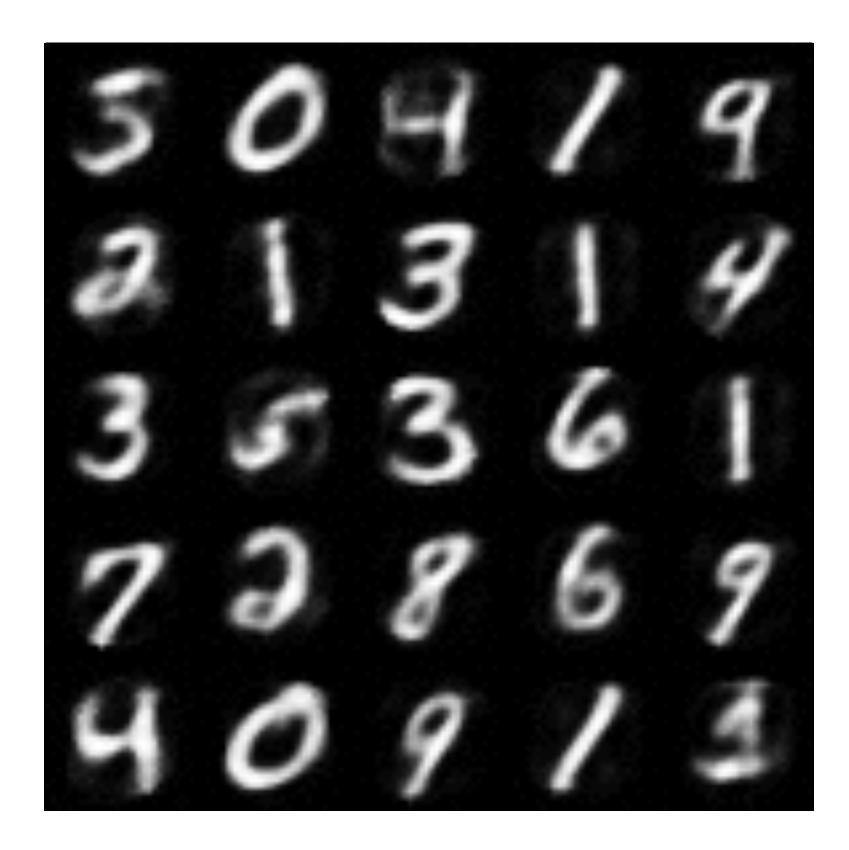
A simple graphical example





Ask the training to attempt to recreate the

A simple graphical example



A simple graphical example

A simple graphical example

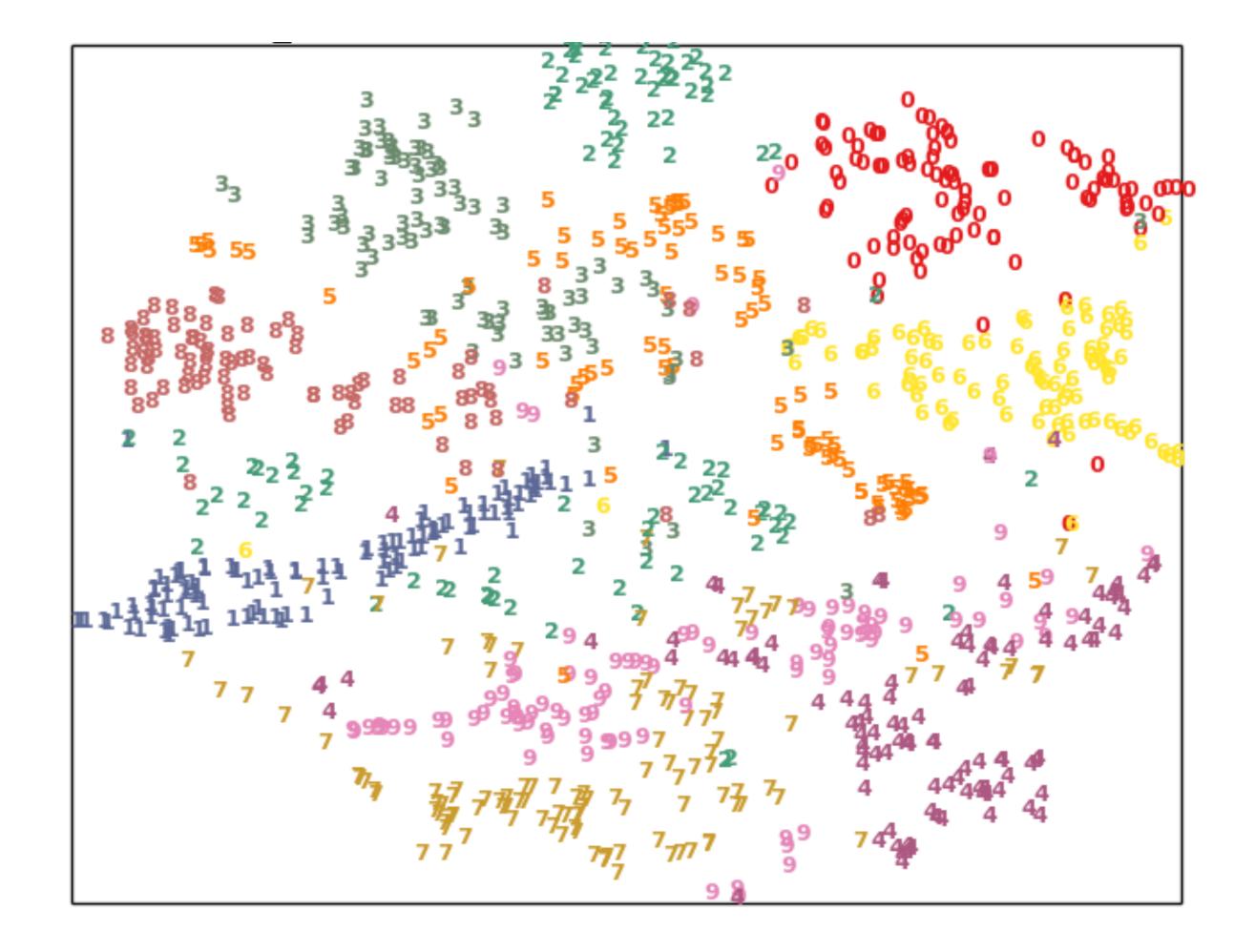
Flatten the output into 2D, for plotting

(Imagine flattening a 3D cube to a 2D square)

Precision

0.84

0.98-0.99 is possible on this dataset



Financial Crime Demos

Background

Machine learning 2

Rules based: Graph databases

What is a graph database?

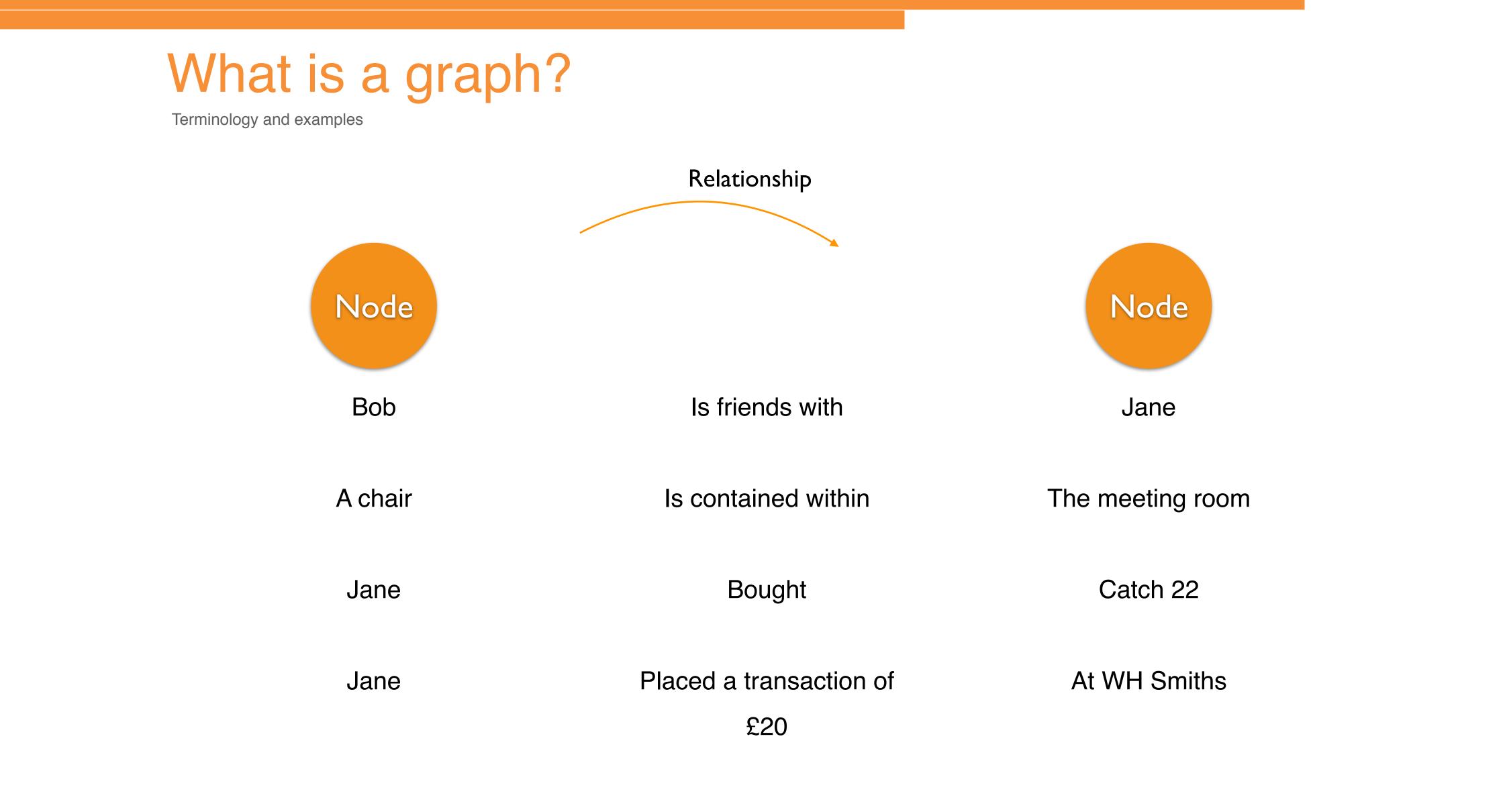
An object, a thing, a

A link, a relationship, a

3

A natural representation of your data

A graph structure may be a more natural fit of your data. Use the right tool for the job.



The power of graphs

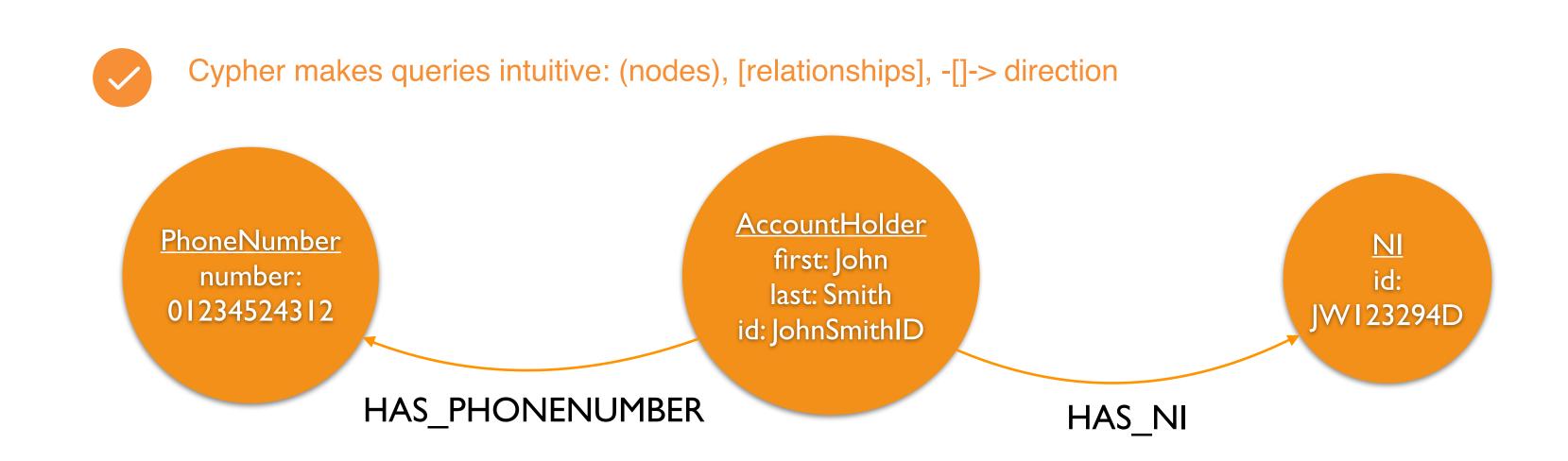
The motivation

Better represents problem domain

Performance

Agility

Flexibility



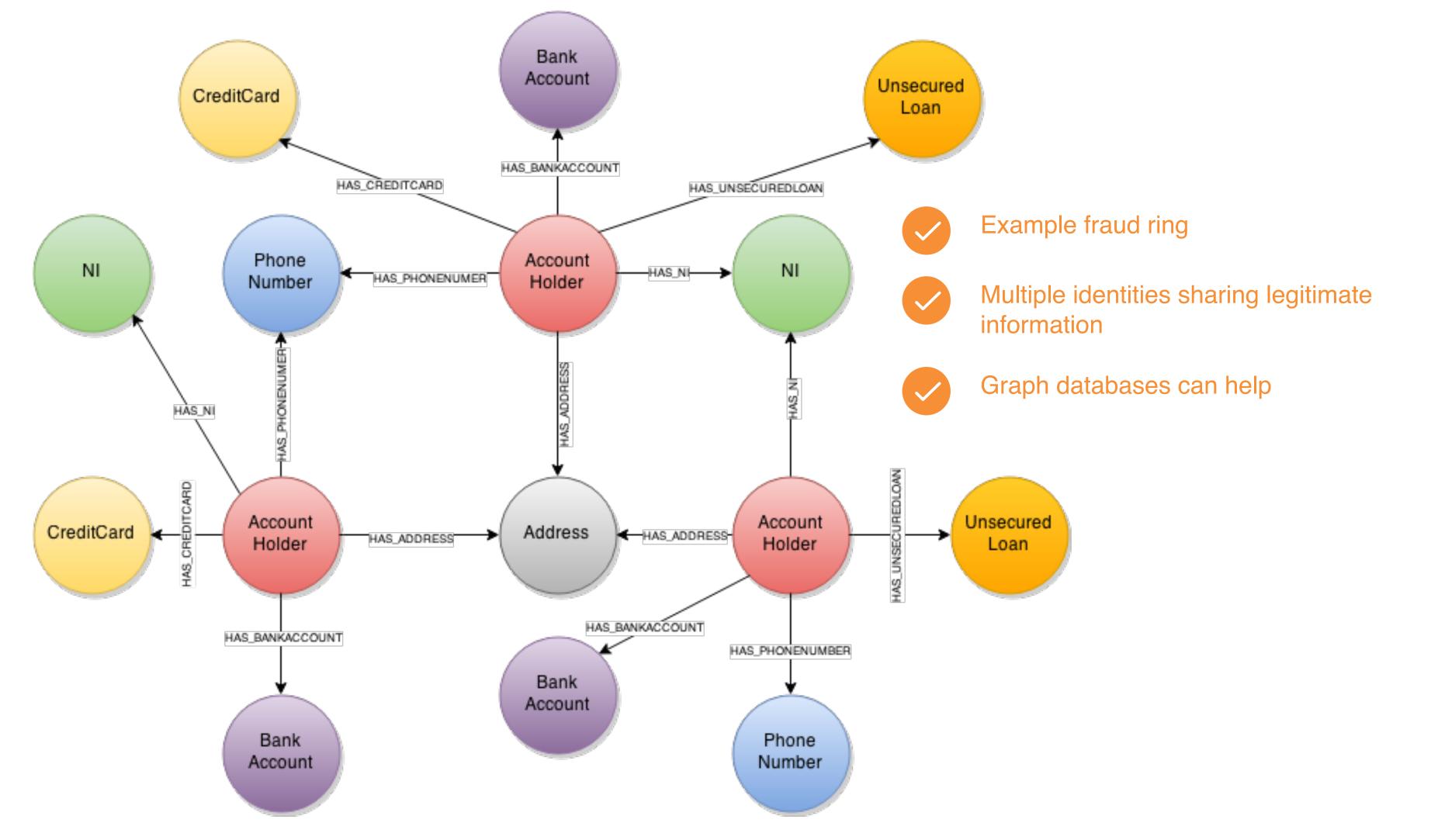
MATCH	(n)-[r]-() RETURN n,r;	 Match a
МАТСН	(ni:NI) RETURN ni;	 Match a
MATCH	(n)-[:HAS_NI]-() return n;	 Match a

```
MERGE (:PhoneNumber {number:"01234524312"}) <-[:HAS_PHONENUMBER]
-(:AccountHolder {first:"John",last:"Smith",id:"JohnSmithID"})-[:HAS_NI]->(:NI {id:" JW123294D"})
```

all nodes with a relationship.

any node of type NI

any node that has a HAS_NI relationship



Deep Learning: Voice "fingerprinting" for origination

Offline

Prove the identity of the customer

Record customer's voice

Record

Pre-process data to generate features.

Process

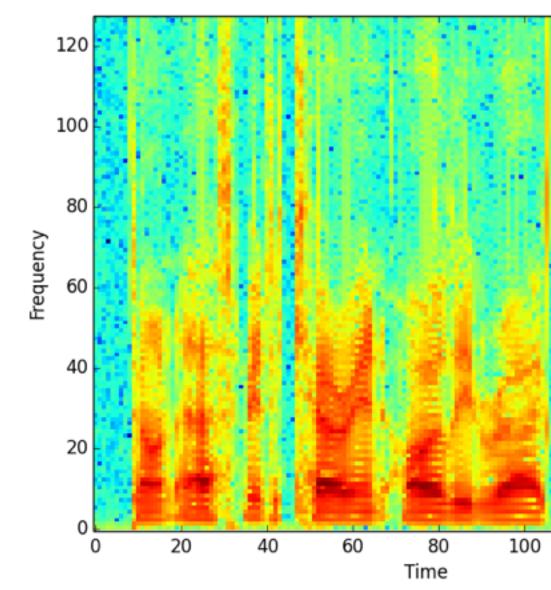
Train deep learning model

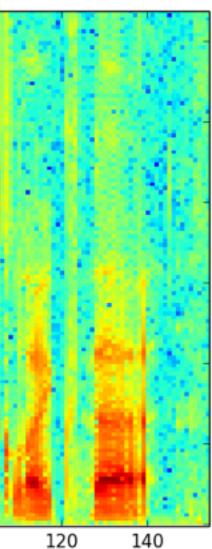
Store "fingerprint" for verification

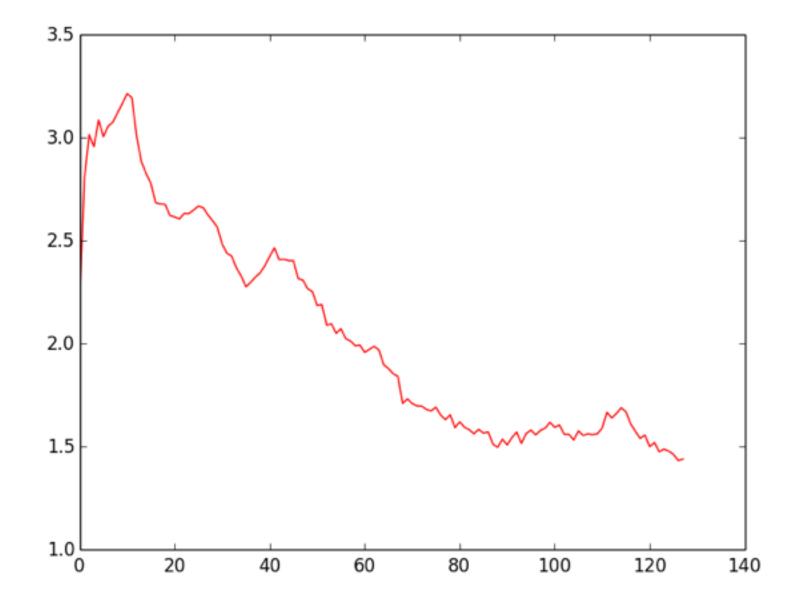
Save

D	Q
Onli	Record customer's voice
	Record
	Pre-process data to generate features. Process
	Y
	Compare result to "fingerprint"
	Test
Ļ	,

Overview







Deep learning

bob_2 bob_1 bob_8 bol

Each colour/name represents a person. Each example is a phrase. dave_28

steve_14

steve_15

steve_18	dave_19 dave_25	
bob_5	dave_29ve_26ave_22 dave_27	
bob_3 -bob_4 ob_6	dave_21 dave_20	
	dave_26	

bob_0

steve_10 steve_12 steve_17 steve_9 steve_11

steve_16

steve 13

Classification

Probability **Bob Steve Dave** [0.98 0.01 0.01]

[0.02 0.03 0.96]

Voice data: <u>http://web.mit.edu/6.863/share/nltk_lite/timit/</u> Python + Keras + SkLearn

[0.01 0.97 0.01]

Decision trees: Predicting Mortgage Defaults

Demo: Mortgage default prediction

Can we predict defaults?

- Given labelled mortgage applications, is it possible to predict defaults?
- What data have we got access to?
- Is it enough?

Freddie Mac / Fannie Mae

Huge datasets released by publicly owned US lenders.

Provides default label

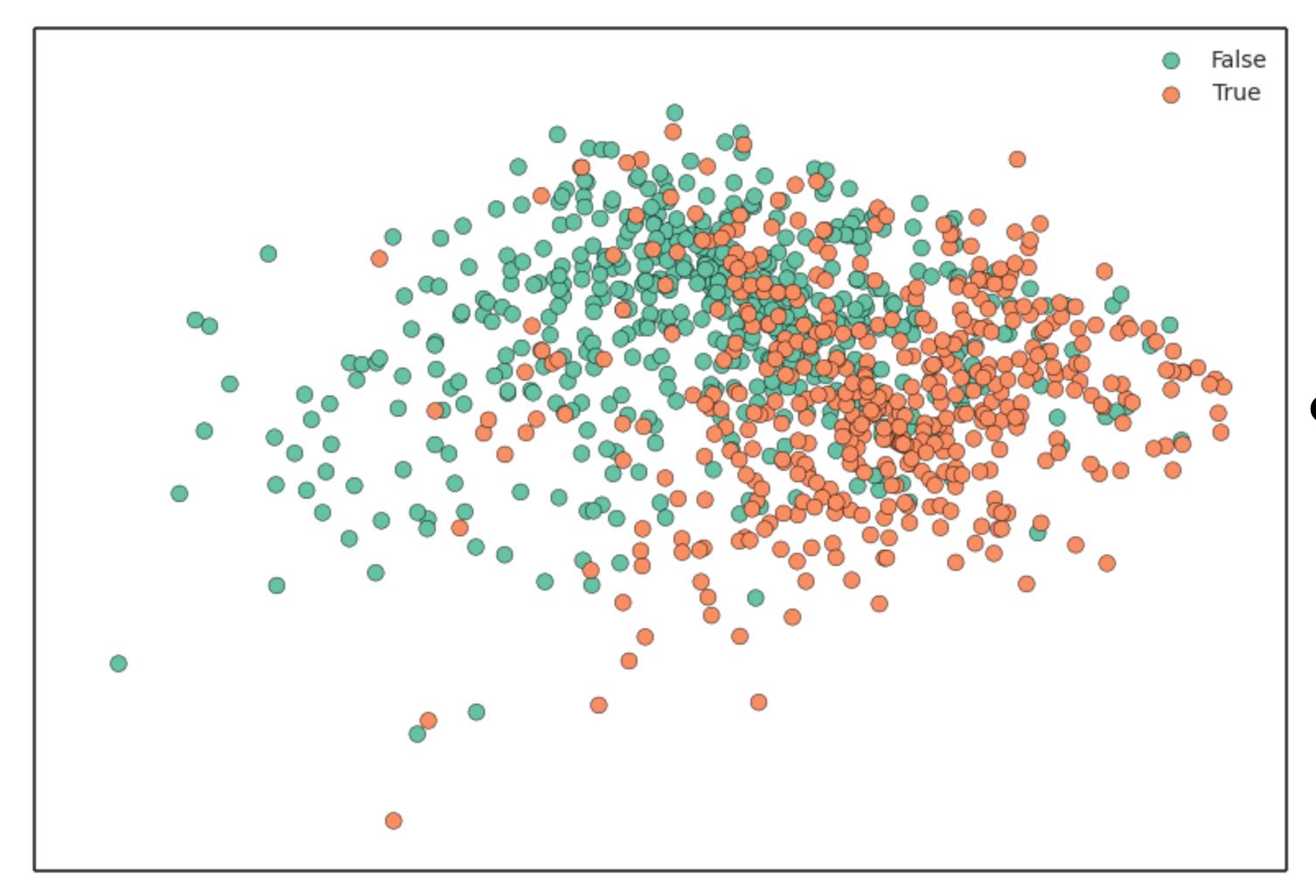
Let's take a look at the data

Big cleaning effort

Remove as much as feasible

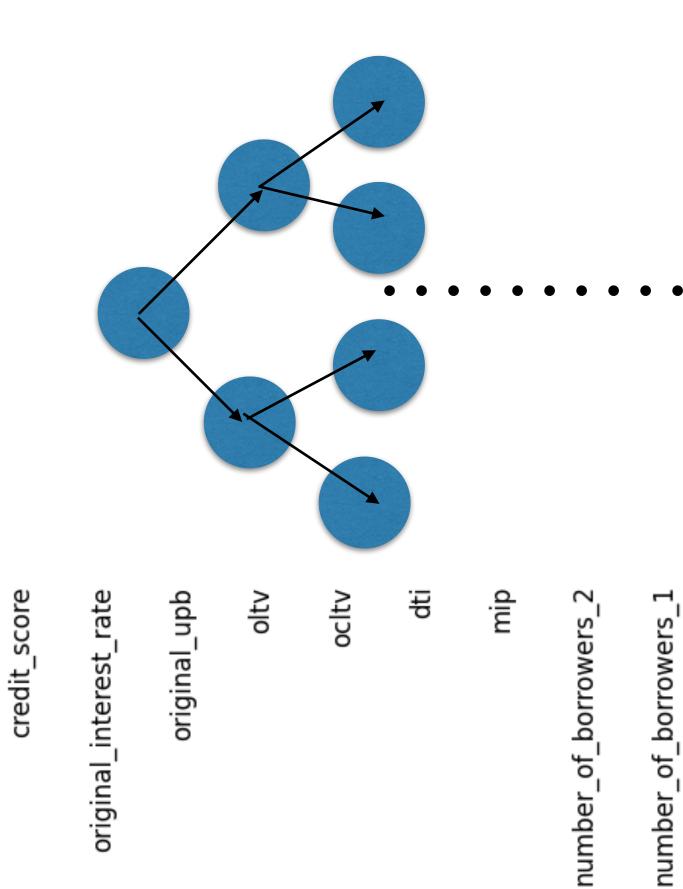
CREATE TABLE loans_learning (id integer NOT NULL, first_payment_date date, credit_score integer NOT NULL, first_time_homebuyer_flag integer NOT NULL, mip integer, number_of_units integer, occupancy_status integer NOT NULL, ocltv numeric, dti integer NOT NULL, original_upb numeric, olty numeric, original_interest_rate numeric, channel integer NOT NULL, prepayment_penalty_flag integer NOT NULL, property_type integer NOT NULL, loan_sequence_number char(12), loan_purpose integer NOT NULL, original_loan_term integer, number_of_borrowers integer NOT NULL, hpi_at_origination numeric, default_flag boolean);

Let's take a look at the data



Flatten the output into 2D, for plotting

Decision tree



hpi_at_origination

Classification

Yes

number_of_borrowers_0

No Yes

No

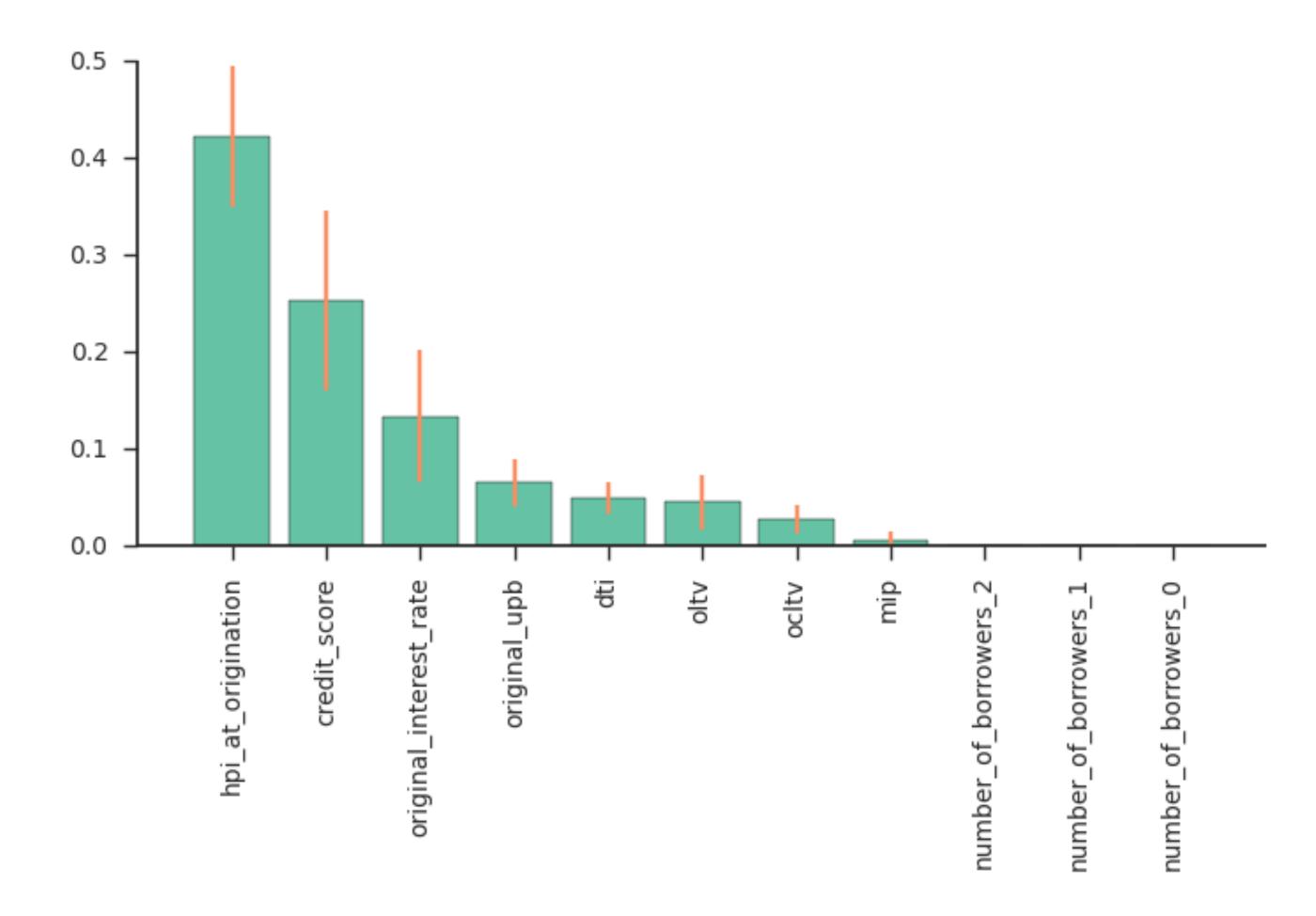
Data

- Approx. 10,000 default examples (20,000 total)
- Random Forest classifier
- 11 input features (very small)

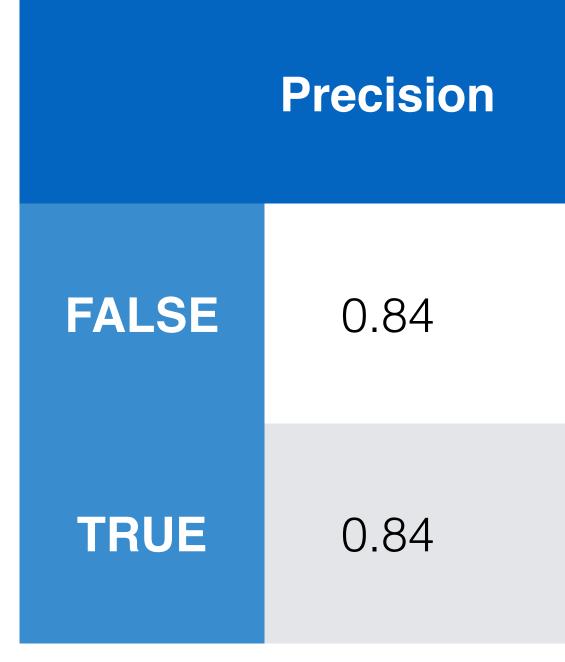
@DrPhilWinder TRIFORK. ...think software

Results 1: Feature importance

Mortgage



Results 2: Classification



Recall	F1-score	Support
0.83	0.84	995
0.84	0.84	1005

Deep learning: Detecting unknown crime

Demo: Detecting unknown fraud

You're always one step behind

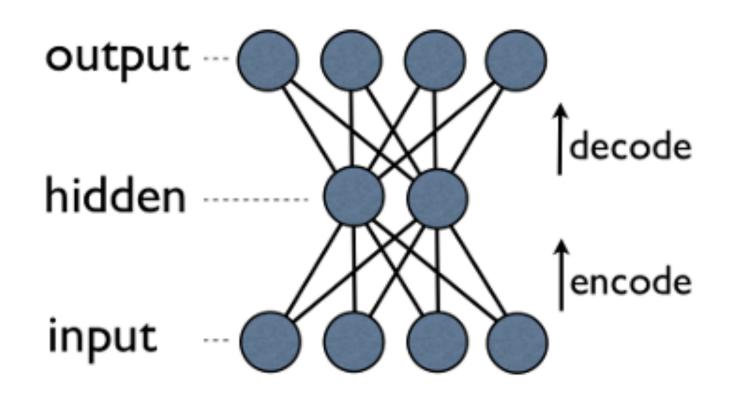
Deep learning

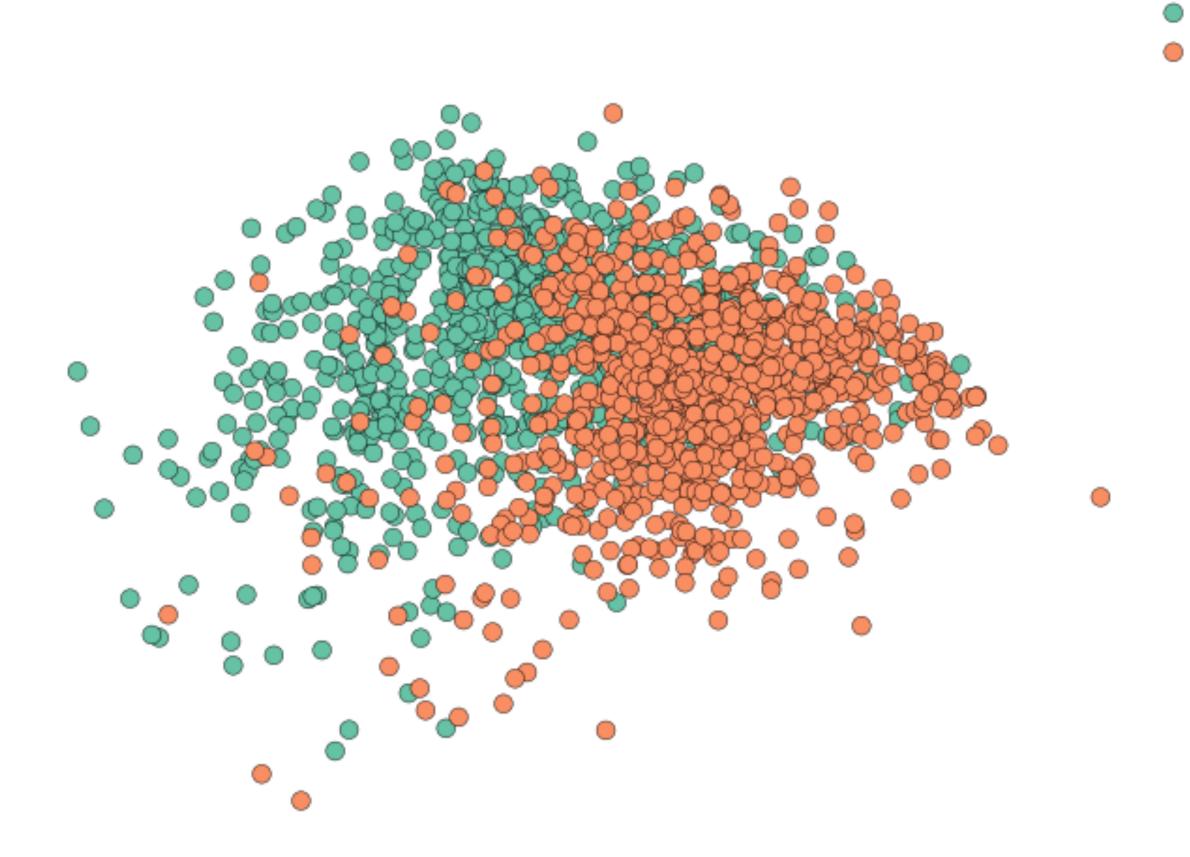
Lets ask deep learning to investigate the data.

Completely unsupervised, I have no data on fraudulent mortgages.

How? An Auto-Encoder

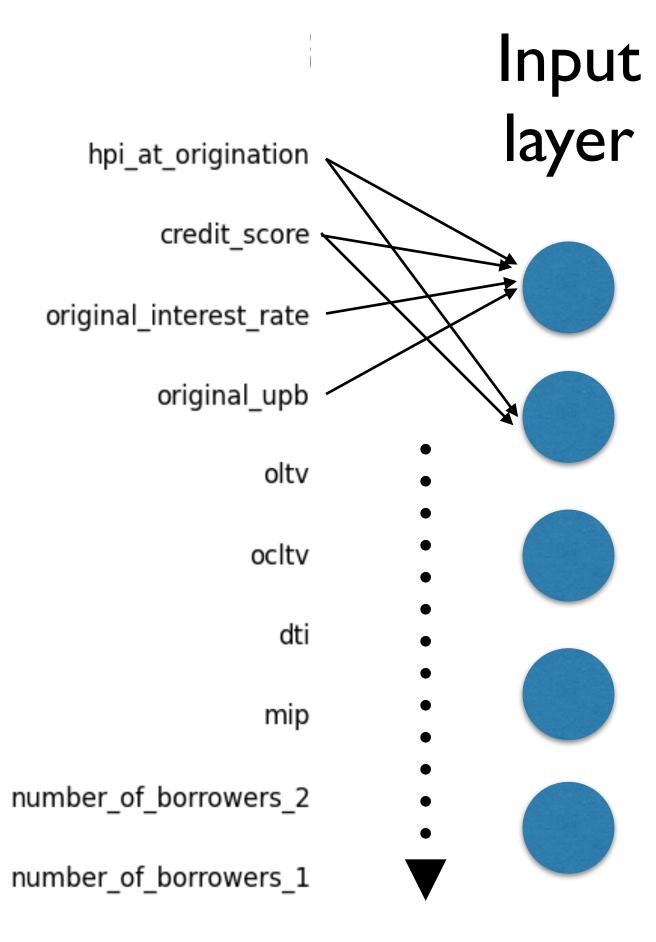
• What about when the rules don't catch the fraudster? • What should we look for?



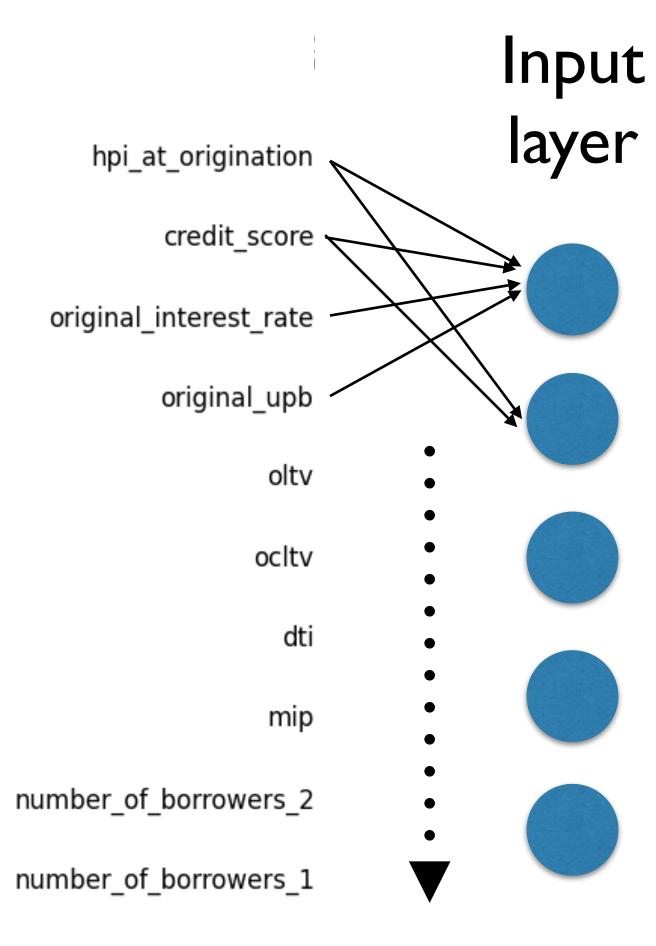


False

True

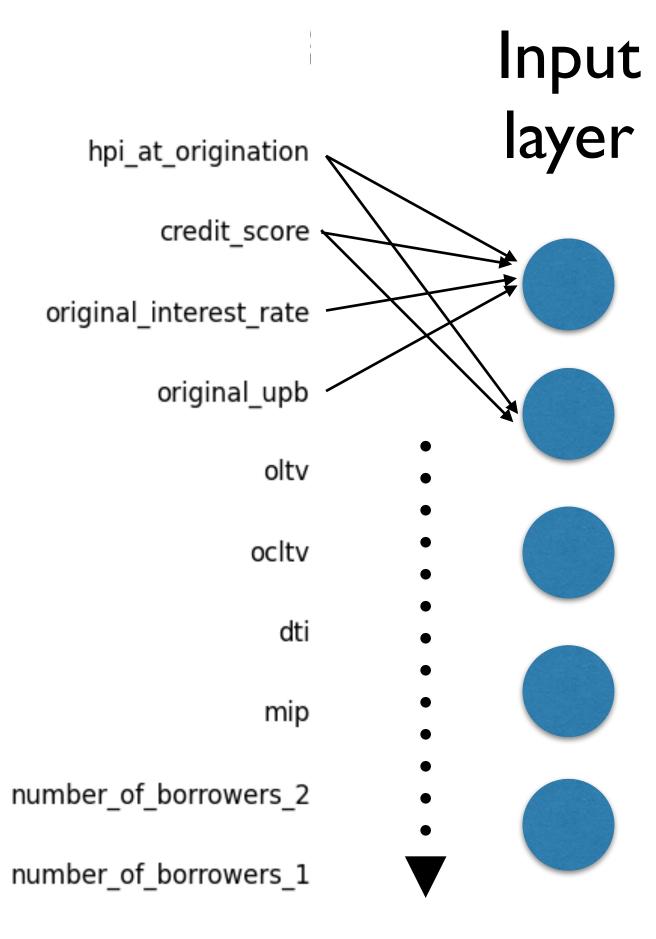


number_of_borrowers_0



number_of_borrowers_0

A number hidden layers

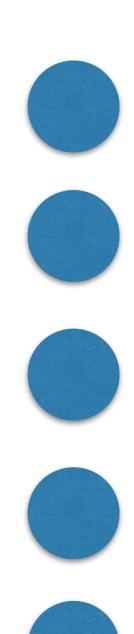


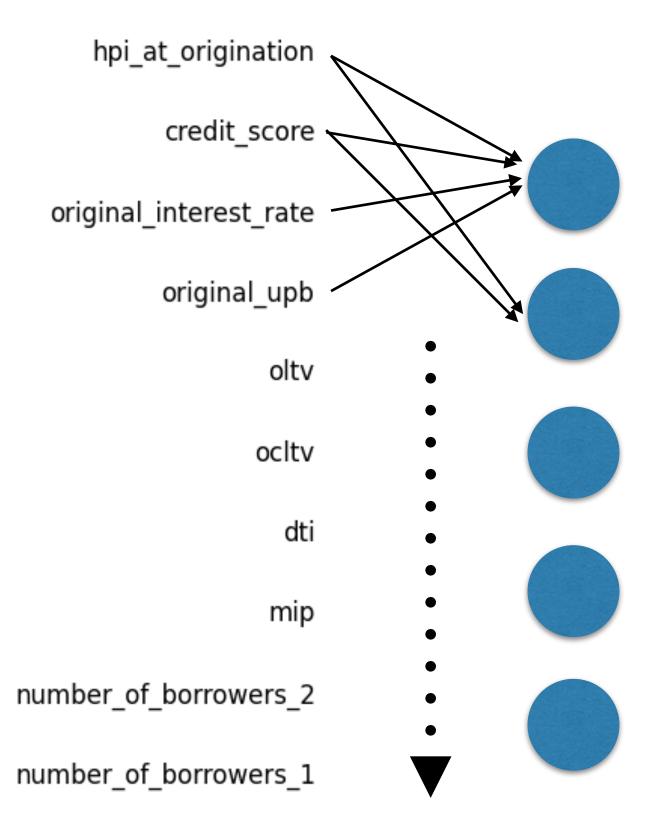
number_of_borrowers_0

During training...

Reconstruction Layer

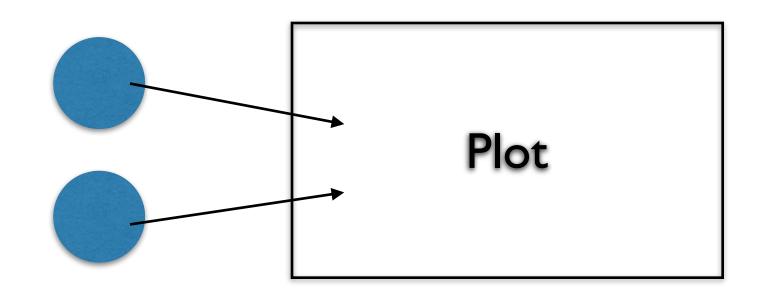
A number hidden layers

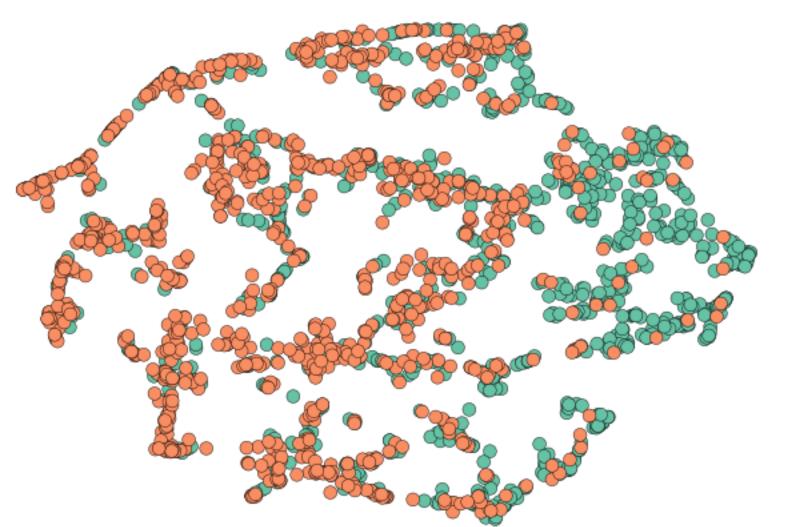




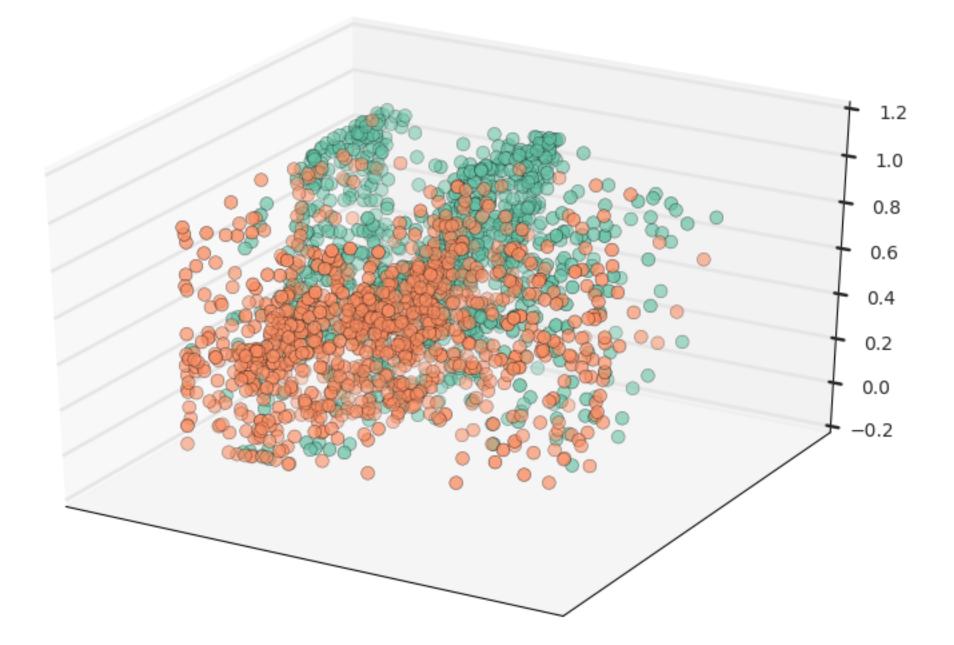
number_of_borrowers_0

Output plotting layer





One of many possible visualisations



Tools and techniques

Background

Vlachine learning 2

Architectures

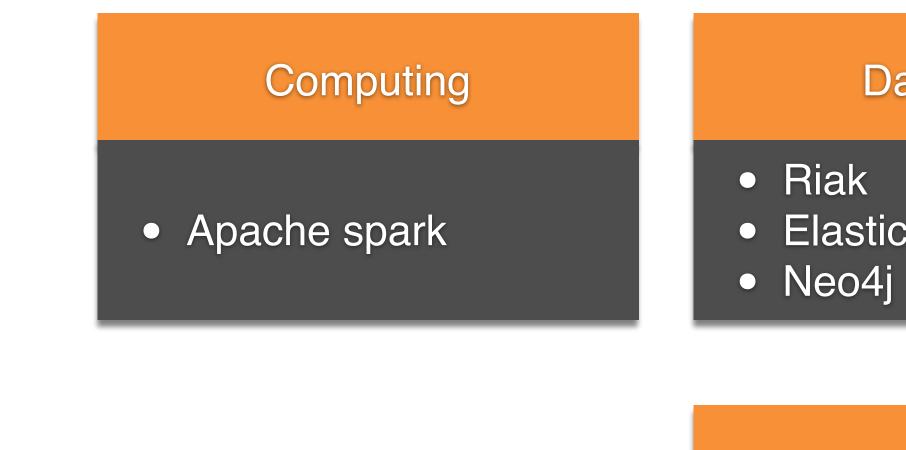
Tech: Proof of concepts (R&D)

- sklearn
- Keras, Theano
- Laptop

Python (R/Matlab)

• A database of some kind (Elasticsearch + elasticsearch-py)

Tech: Production



- APIs
- Reporting
- Front end
- Etc. etc.

Databases

• Elasticsearch

And many more...

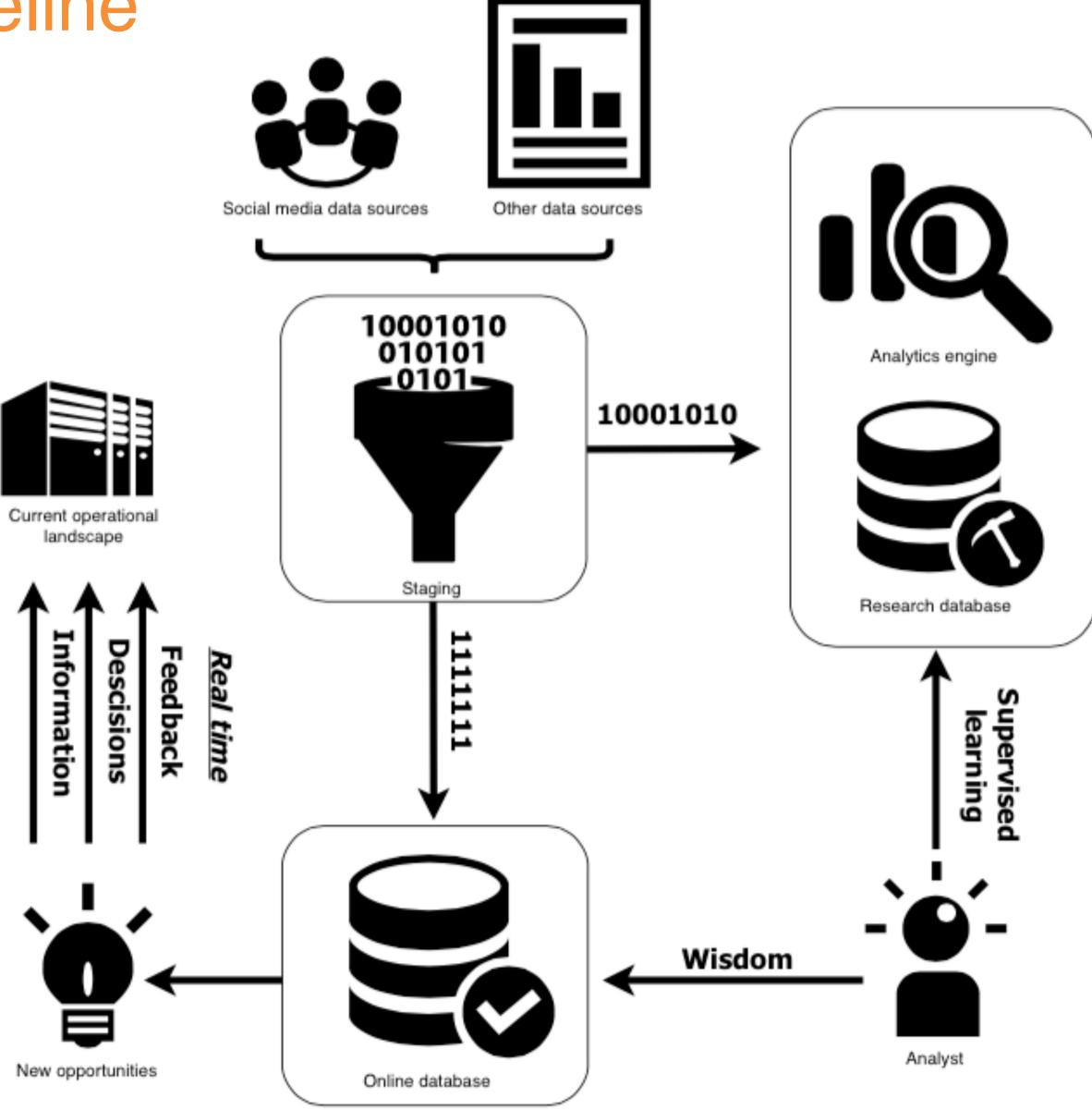
• Legacy integration

• Data management • User management

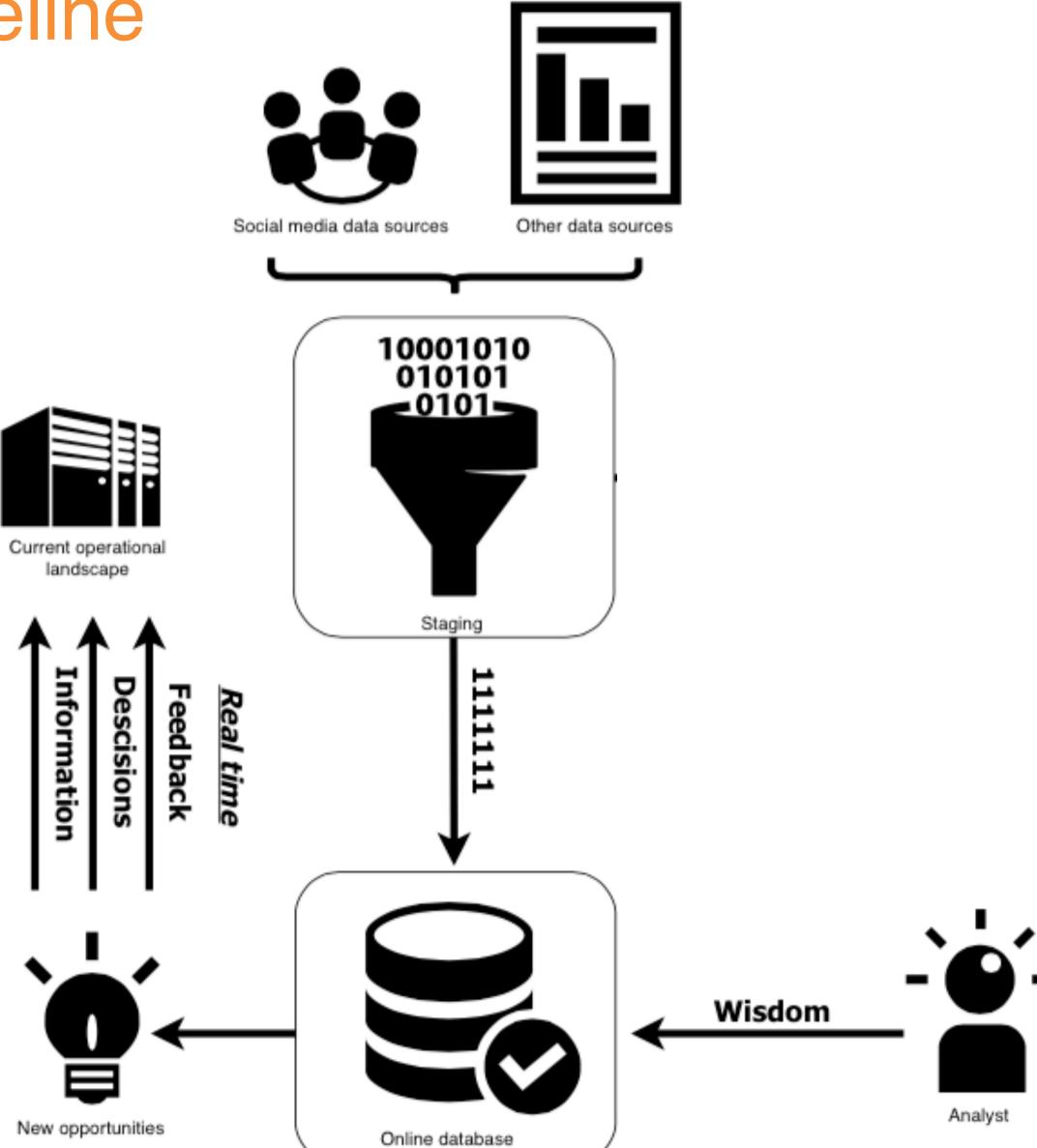
Infrastructure/Comms

- Apache Mesos
- Docker
- Akka
- Consul/Terraform
- etc.

Tech: Pipeline

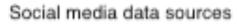


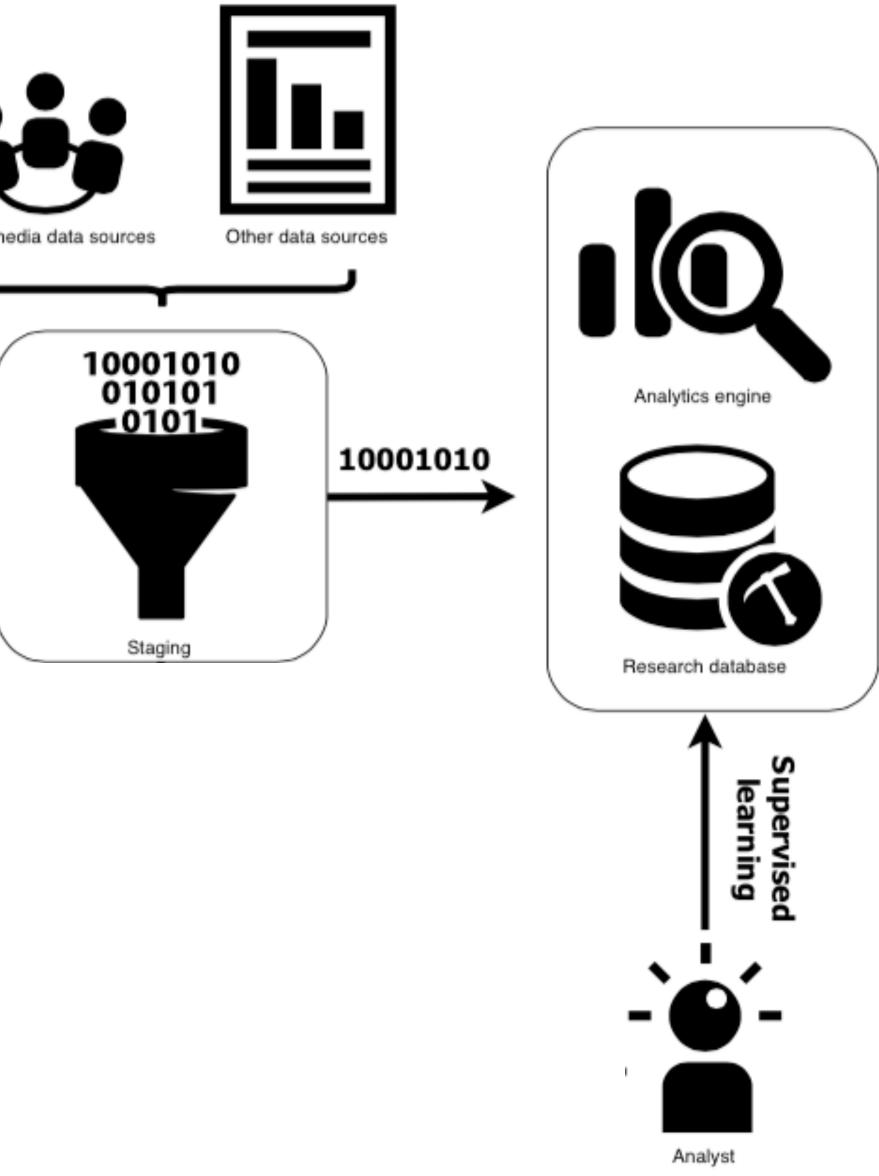
Tech: Pipeline



pipeline Online

Tech: Pipeline





ffline pipeline

Summary

- Fraud evolves rapidly, legislation evolves even faster!
- Need for a disruptive approach
- Deep learning reveals new methods of analysis and sophisticated automation
- Profit drivers: Automation improves efficiency

Being able to trust valid applications through analysis and verification

Join the conversation #gotocph

Remember to rate this session

Thank you!



COPENHAGEN INTERNATIONAL SOFTWARE DEVELOPMENT CONFERENCE 2015

Join the conversation #gotocph

<u>github.com/philwinder</u>

@DrPhilWinder

pnw@trifork.com

Conference: October 5-6 // Workshops: October 7-8, 2015