
Building	
 Languages	
 for	
 	

Self-­‐Rebuilding	
 Robots	

Ulrik	
 Pagh	
 Schultz	

University	
 of	
 Southern	
 Denmark	

(joint	
 work	
 with	
 numerous	
 colleagues)	

Q: Which robot would you bring to
Mars?

3

A: The robot building kit (*)

4

(*): Disclaimer: Unlike this morning’s keynote, we’re not rocket scientists.
Don’t bring our (prototype) robots to Mars, you’ll die!

3x

Robot building kit?

5

? ? ?

Resilient & Adaptable

6

[CKBot, Yim] [MTRAN, Kurokawa]

3x 3x

Programmable matter

7
[Claytronics, Goldstein]

This talk: ATRON robot programming
(before taking it to Mars)

8

Robotics programming
We need you! Current state

9

Robotics programming

10

Hardware

Software

Intelligence

C code: val = (*((type *&)(pIP))++);

Robotics programming

11

Hardware

Software

Intelligence

C code: val = (*((type *&)(pIP))++);

This talk: DSLs

Domain-specific languages
Fowler’s advantages:

�  Improving development
productivity

�  Communication with domain
experts

�  Change in execution context

�  Alternative computation model

�  Opportunities for verification

DSLs 101:

�  Language for solving problems in a
given domain

�  Examples: SQL, XML, Excel, …

�  Key design issue: expressiveness vs
abstraction

�  Key value: abstraction mechanism

�  Tools: xtext, MPS, spoofax, …

12

ATRON programming?
�  Modular, self-reconfigurable robot

�  3D self-reconfiguration, hybrid/lattice-type
�  Atmel 8-bit processor with 4K RAM /

128K flash ROM
�  main joint and male connector actuation,

8 connectors total
�  neighbor communication (and proximity

detection) via 8 IR ports

�  (Real-time) embedded system with
dynamically evolving topology

�  Unreliable (bug/feature)

13

14

First language prototype:
Everything’s an object?
module Connector implements Car {
 Axle front = Axle(channel#2);
 Axle rear = Axle(channel#6);
 move(v) { front.move(v); rear.move(v); }
 turn(d) { front.rotate(d/2); rear.rotate(-d/2); }
} module Axle implements Car {

 Wheel left = Wheel(channel#0);
 Wheel right = Wheel(channel#2);
 Connector c = Connector(channel#5);
 move(v) { left.move(v); right.move(-v); }
}

module Wheel implements Car {
 Axle axle = Axle(channel#5);
}

whole Car {
 drive(v) {
 Connector.move(v);
 }
 turn(d) {
 Connector.turn(d);
 }
}

15

First language prototype:
Everything’s an object?
module Connector implements Car {
 Axle front = Axle(channel#2);
 Axle rear = Axle(channel#6);
 move(v) { front.move(v); rear.move(v); }
 turn(d) { front.rotate(d/2); rear.rotate(-d/2); }
} module Axle implements Car {

 Wheel left = Wheel(channel#0);
 Wheel right = Wheel(channel#2);
 Connector c = Connector(channel#5);
 move(v) { left.move(v); right.move(-v); }
}

module Wheel implements Car {
 Axle axle = Axle(channel#5);
}

whole Car {
 drive(v) {
 Connector.move(v);
 }
 turn(d) {
 Connector.turn(d);
 }
}

•  Good:
•  modularity
•  concise RPC syntax

•  Bad:
•  hardcoded spatial structure
•  programming model not homogeneous
•  doesn’t really work!

#2: Roles for shapes,
functions for functionality?

�  Functional reactive programming with physical pattern matching
based on roles
�  roles defined using spatial constraints
�  behavior defined using distributed functions

�  VM does distributed shape/role-based code application

role Wheel (Module x) = (center_position EAST_WEST x) and ...
 | LeftWheel (Wheel x) = sizeof (connected WEST x)=1
 | …
fun moveWheel speed (LeftWheel w) = @turnContinuous speed w
 | moveWheel speed (RightWheel w) = @turnContinuous -speed w
apply* (moveWheel 1)

nWheels = fold* (fn n (Wheel m) => (n+1)) 0
maxX = fold* (fn x (Module m) => if x>@getX m then x else @getX m) -127

16

#2: Roles for shapes,
functions for functionality?

�  Functional reactive programming with physical pattern matching
based on roles
�  roles defined using spatial constraints
�  behavior defined using distributed functions

�  VM does distributed shape/role-based code application

role Wheel (Module x) = (center_position EAST_WEST x) and ...
 | LeftWheel (Wheel x) = sizeof (connected WEST x)=1
 | …
fun moveWheel speed (LeftWheel w) = @turnContinuous speed w
 | moveWheel speed (RightWheel w) = @turnContinuous -speed w
apply* (moveWheel 1)

nWheels = fold* (fn n (Wheel m) => (n+1)) 0
maxX = fold* (fn x (Module m) => if x>@getX m then x else @getX m) -127

17

•  Good:
•  roles for mapping structure to behavior
•  wonderful functional abstractions

•  Bad:
•  wonderful functional abstractions
•  very difficult to implement properly (2K)
•  more well-suited to behavior-based

control (continuous) than self-
reconfiguration (state transitions)

•  doesn’t really work

abstract role Wheel extends Module {
 …
 require self.center == EAST_WEST;
 require sizeof(self.connected(side)) == 1;
 behavior move() {
 self.@TURN_CONTINUOUSLY(turn_dir);
 }
 command evade() { … }
}

role RightWheel extends Wheel { … }

role Head extends Module {
 require self.center == NORTH_SOUTH;
 startup initialize() {
 handle PROXIM_1 PROXIM_3 {
 Wheel.evade(0);
…

#3: Roles for shapes,
Roles for functionality!

�  Role = hierarchy of behaviors in context
�  Spatial constraints for activation and deployment
�  Efficient and dynamic role-based distributed code

deployment

18

abstract role Wheel extends Module {
 …
 require self.center == EAST_WEST;
 require sizeof(self.connected(side)) == 1;
 behavior move() {
 self.@TURN_CONTINUOUSLY(turn_dir);
 }
 command evade() { … }
}

role RightWheel extends Wheel { … }

role Head extends Module {
 require self.center == NORTH_SOUTH;
 startup initialize() {
 handle PROXIM_1 PROXIM_3 {
 Wheel.evade(0);
…

#3: Roles for shapes,
Roles for functionality!

�  Role = hierarchy of behaviors in context
�  Spatial constraints for activation and deployment
�  Efficient and dynamic role-based distributed code

deployment

19

•  Good:
•  roles for mapping structure to behavior
•  OO-style reuse easy to implement

•  Bad:
•  robot control algorithms are hard to

read: distributed across roles
•  doesn’t really work

#4: The insight: One program
distributed across the robot.

�  Self-reconfiguration = group
sequential/parallel behavior
�  Execution a “spatial wave of

state changes”
�  Robust local/global execution

in the presence of partial
hardware failure

�  Manage physical parallelism
easily

�  Automatic derivation of
reverse sequence

�  Automatic scheduling of
communication

sequence eight2car {
 M0.Connector[0].retract() &
 M3.Connector[4].retract();
 M3.Joint.rotateFromToBy(0,324,false,150);
 … } …
car2eight = reverse eight2car;
car2snake = car2eight + eight2snake;
snake2car = reverse car2snake;

20

Globally shared state

M0

M0.connector[0].retract() |
M3.connector[4].retract();
M3.rotateFromTo(0,324); ...

M1 M2

M3

21

�  Store current and pending
states in all modules

�  Continuously and
independently of actions
communicate local state to
all neighbors

�  Merge incoming global
state to ensure
progression

#4 (details): State
management

#4 (details): Properties [1/2],
Robustness and efficiency

�  Order of magnitude improvement!

�  Communication:
�  continuous transmission of

idempotent packets
�  broadcast communication

�  Module reset:
�  idempotent operations
�  replication of global state

�  Time: continuous
transmission ensures
fastest safe progression

�  Steps: massive
opportunities for
parallelization often
unexploited

�  Experiments: reversible
experiments reduces need
for reassembly

Robustness: partial failures Efficiency:

22

#4 (details): Properties [2/2],
Program reversibility

�  Reversible programs:
�  facilitated by API design
�  practical tool, not

theoretical result
(reverse, then generate)

�  Not reversal in a purely
semantic sense

�  Perfect for self-
reconfiguration

seq eight2car = {
 M0.connector[0].retract() |
 M3.connector[4].retract() ;
 M3.rotateFromTo(0,324); ... }
seq car2eight = rev eight2car;

x3

23

#4 (details): Properties [2/2],
Program reversibility

�  Reversible programs:
�  facilitated by API design
�  practical tool, not

theoretical result
(reverse, then generate)

�  Not reversal in a purely
semantic sense

�  Perfect for self-
reconfiguration

seq eight2car = {
 M0.connector[0].retract() |
 M3.connector[4].retract() ;
 M3.rotateFromTo(0,324); ... }
seq car2eight = rev eight2car;

x3

24

•  Good:
•  whole-robot control easy to read
•  really works: order of magnitude

robustness improvement
•  practical use of reversible computing

•  Bad:
•  only does sequential operations

Perspectives

�  Programming approach must
match the hardware:
�  unreliable

�  distributed control and state

�  Incremental language evolution:
�  the search for more abstractions

�  patterns & forces

�  Impact: modularity & abstraction
for more robots

25

Goal: morphogenesis

Industrial robots

26

Source: Universal Robots
PS: They’re hiring

DSL for Reversible Assembly Sequences

27

pickup(nut,gripper2,nut_pos); moveto(above_table);
try(3: force<1N) {
 moveto(on_bolt); call apply_and_turn_nut
}
release(nut,gripper2,nut_attached_pos);

Agricultural robots

�  Precision agriculture

�  DSLs for safety

�  Software: ROS
Excellent pathway into
(experimental) robotics

(note: ROS≈javascript of robotics)

28

Example: Kongskilde Robotti…

…and earlier SDU prototypes

Unmanned Aerial Systems
(i.e., flying robots aka drones)

Software (& Hardware)

�  Civilian applications, e.g.,
agriculture, environmental
monitoring, …

�  Principles for a DSL for
swarm coordination?

�  Code generation for safety!

Infrastructure hotspots

�  License plates

�  UAS Test Center

�  Pilot certification

�  BVLOS legislation

29

Lightweight energy-efficient robots

30

Take-away
Robots

�  Physical modularity

�  Cognitive gap

�  They’re coming (but they
need your help)

DSLs

�  Ultimate abstraction
mechanism

�  Abstractions require
insights

�  Systematic development?

31

