COPENHAGEN Ot()
INTERNATIONAL
SOFTWARE DEVELOPMENT
CONFERENCE 2015

confel ence

Building Languages for
Self-Rebuilding Robots

Ulrik Pagh Schultz
University of Southern Denmark

(joint work with numerous colleagues)

3 Join the conversation #gotocph onference: October 5-k // Workshops: October ?7-8. 2015

goto;

confel ence

Click ‘engage’
to rate sessions
and ask questions

) Join the conversation #gotocph

Q: Which robot would you bring to

What if you were on Mars

and an accident occurred?

(*): Disclaimer: Unlike this morning’s keynote, we’re not rocket scientists.
Don’t bring our (prototype) robots to Mars, you’ll die!

b & Bl o E R

Robot building kit?

Resilient & Adaptable

MODULAR ROBOT REASSEMBLES ITSELF
WHEN KICKED APART

Footage courtesy of

Mark Yim
modlab, University of Pennsylvania

[CKBot, Yim] [MTRAN, Kurokawa]

b & Bl o E R

Programmable matter

' .

I
1Bm 2 3sueu
i

This talk: ATRON robot programming

Robotics programming

£ JORGE CHAM © 2005

B & B P e W B o

Robotics programming

Hidden

Hardware

Robotics programming

Hidden

Software ~ ——=This talk: DSBS

C code: val = (*((type *&)(pIP))++);

enter Rotation Axes

5

Hardware

Domain-specific languages

Fowler’s advantages: / DSLs 101: \
®* Improving development ® Language for solving problems in a
productivity given domain
® Communication with domain ® Examples: SQL, XML, Excel, ...
experts
® Key design issue: expressiveness vs
e Change in execution context abstraction
® Alternative computation model e Key value: abstraction mechanism

® Opportunities for verification * Tools: xtext, MPS, spoofax, ...

ATRON programming?

® Modular, self-reconfigurable robot jo ComerRogion v
e 3D self-reconfiguration, hybrid/lattice-type :

® Atmel 8-bit processor with 4K RAM /
128K flash ROM

® main joint and male connector actuation,
8 connectors total

® neighbor communication (and proximity
detection) via 8 IR ports

® (Real-time) embedded system with
dynamically evolving topology

® Unreliable (bug/feature)

First language prototype:
Everything’s an object?

module Connector implements Car {

Axle front = Axle(channel#2);
Axle rear = Axle(channel#6);
move(v) { front.move(v); rear.move(v); }

turn(d) { front.rotate(d/2); rear.rotate(-d/2); } whole Car {

) module Axle implements Car { drive(v) {
Wheel left = Wheel(channel#0); Connector.move(v);
Wheel right = Wheel(channel#2); }
Connector ¢ = Connector(channel#b5); turn(d) {
move(v) { left.move(v); right.move(-v); } Connector.turn(d);

! }
module Wheel implements Car { }

Axle axle = Axle(channel#b);

}
b & Bl o E R

First language prototype:
Everything’s an object?

modul ¢ Good:
Axle o i
e modularity

move ¢ concise RPC syntax

turn(

}

mq o .

tj Bad . ove(v);
* hardcoded spatial structure

Q . :
) programming model not homogeneous ()
) « doesn’t really work!

modul

Axle a

}
b & Bl o E R

B #2: Roles for shapes,
functions for functionality?

Y

® Functional reactive programming with physical pattern matching
based on roles

® roles defined using spatial constraints
® behavior defined using distributed functions

® VM does distributed shape/role-based code application

role Wheel (Module x) = (center_position EAST_WEST x) and ...
| LeftWheel (Wheel x) = sizeof (connected WEST x)=1
| ...
fun moveWheel speed (LeftWheel w) = @turnContinuous speed w
| moveWheel speed (RightWheel w) = @turnContinuous -speed w

apply* (moveWheel 1)

nWheels = fold* (fn n (Wheel m) => (n+1)) O
maxX = fold* (fn x (Module m) => if x>@getX m then x else @getX m) -127

« roles for mapping structure to behavior /?

 wonderful functional abstractions

- Bad:
« wonderful functional abstractions
 very difficult to implement properly (2K)
« more well-suited to behavior-based
control (continuous) than self-
reconfiguration (state transitions)
e doesn’t really work

#a $

I EE K A EEEREREE X

NORT ‘

’*\x_" #3: Roles for shapes,
B Roles for functionality!

abstract role Wheel extends Module {

%

require self.center == EAST_WEST,
require sizeof(self.connected(side)) == 1;
behavior move() {

self @TURN_CONTINUOUSLY (turn_dir);

}

command evade() { ... }

}
role RightWheel extends Wheel { ... }

role Head extends Module {
require self.center == NORTH_SOUTH,;

startup initialize() { ® Role = hierarchy of behaviors in context
handle PROXIM_1 PROXIM_3 { e Spatial constraints for activation and deployment
Wheel.evade(0); * Efficient and dynamic role-based distributed code

deployment

"t H#3: Roles for shapes

« Good:

abstract) ¢ roles for mapping structure to behavior

eauires o Q0-style reuse easy to implement

be?tavior

self.@TL

) « Bad:

commang)

) « robot control algorithms are hard to

role Right read: distributed across roles

role Head « doesn’t really work

require s

startup i

handle P” ent
Wheel.evade(0); e Efficient and dynamic role-based distributed code

deployment _

& .2 S & & of

#4: The insight: One program
distributed across the robot.

® Se|f-l’eC0nflgu rat|on = gI’OUp sequence eightzcar{
sequential/parallel behavior MO.Connector[0].retract() &
* Execution a “spatial wave of M3.Connector[4].retract();

M3.Joint.rotateFromToBy(0,324,false,150);
N
car2eight = reverse eight2car;
car2snake = car2eight + eight2snake;
snake2car = reverse car2snake;

state changes’

® Robust local/global execution
in the presence of partial
hardware failure

® Manage physical parallelism
easily

® Automatic derivation of
reverse sequence

® Automatic scheduling of
~_communication

#4 (details): State

management
MO.connector[0].retract() | Globally shared state
M3.connector[4].retract(); ® Store current and pending
M3.rotateFromTo(0,324); ... states in all modules

® Continuously and
iIndependently of actions
communicate local state to
all neighbors

® Merge incoming global
state to ensure
progression

#4 (detalls): Properties [1/2],
Robustness and efficiency

Robustness: partial failures Efficiency:
® QOrder of magnitude improvement! ® Jime: continuous
o transmission ensures
®* Communication: fastest safe progression
® continuous transmission of :
idempotent packets e Steps: massive

opportunities for
parallelization often
® Module reset: unexploited

® |dempotent operations °

® broadcast communication

Experiments: reversible

® replication of global state experiments reduces need
for reassembly

#4 (details): Properties [2/2],
Program reversibility

seq eight2car = {

® ' :
Reversible programs: MO.connector[0].retract() |

¢ facilitated by API design M3.connector[4].retract() ;
[practica| tool, not M3.rotateFromTo(0,324); ... }
theoretical result seq car2eight = rev eight2car,

(reverse, then generate)

®* Not reversal in a purely
semantic sense

® Perfect for self-
reconfiguration

#4 (details): Properties [2/2],

Program reversibility
« Good:
« whole-robot control easy to read
 really works: order of magnitude g
robustness improvement |
e practical use of reversible computing

- A —T

1+ Bad:
« only does sequential operations

Perspectives

Goal: morphogenesis

Programming approach must
match the hardware:

® unreliable
® distributed control and state

Incremental language evolution:
® the search for more abstractions
® patterns & forces

Impact: modularity & abstraction
for more robots

Industrial robots

UNIVERSAL ROBOTS

Source: Universal Robots
- PS: They're hiring

DSL for Reversible Assembly Sequences

Screw insertion start

Peg-in-hole action
(reversed by moves)

Automatic Error Recovery
t Assembly Operations
g Reverse Execution

n, Ulrik Pagh Schultz and Lars-Peter Ellekilde
IROS 2015

uonjesado masosun

Insertion of screw

L
" (eouanbas Bumaios ym opeu)
Mmauos Jo Buidsern

pickup (nut, gripper2, nut pos); moveto (above table);
try (3: force<1N) ({
moveto (on bolt); call apply and turn nut p

Forward operation Reverse operation }
—_— —————
local reverse

fiznneion - release (nut, gripper2,nut_attached pos

& p—

Agricultural robots

Example: Kongskilde Robotti...
. T B © Frecision agriculture

e DSLs for safety

e Software: ROS

Excellent pathway into
(experimental) robotics

(note: ROS=javascript of robotics)

Unmanned Aerial Systems
(1.e., flying robots aka drones)

Software (& Hardware) Infrastructure hotspots
e Civilian applications, e.g., ® License plates
agriculture, environmental
monitoring, ... e UAS Test Center

* Principles for a DSL for ® Pilot certification

swarm coordination? e BVLOS legislation

® (Code generation for safety!

Lightweight energy-efficient robots

SpringyBot

Robot build from LocoKit

- Prong -

e &K Bl o E R

ake-away

Robots DSLs
® Physical modularity e Ultimate abstraction
mechanism

e Cognitive gap
_ ®* Abstractions require
® They're coming (but they insights

need your help)

* Systematic development?

goto;

confel ence

QS

Remember to

rate this session
Thank you/

