
Fast Delivery
Adrian Cockcroft @adrianco

Technology Fellow - Battery Ventures
September 2014

Typical reactions to my Netflix talks…

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010 It only works for
‘Unicorns’ like

Netflix”
– 2011

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010 It only works for
‘Unicorns’ like

Netflix”
– 2011

“We’d like to do  
that but can’t”

– 2012

Typical reactions to my Netflix talks…

“You guys are
crazy! Can’t
believe it”

– 2009

“What Netflix is doing
won’t work”

– 2010 It only works for
‘Unicorns’ like

Netflix”
– 2011

“We’d like to do  
that but can’t”

– 2012

“We’re on our way using
Netflix OSS code”

– 2013

What I learned from my time at Netflix

What I learned from my time at Netflix

•Speed wins in the marketplace

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams
•Freedom and responsibility culture

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams
•Freedom and responsibility culture
•Don’t do your own undifferentiated heavy lifting

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams
•Freedom and responsibility culture
•Don’t do your own undifferentiated heavy lifting
•Use simple patterns automated by tooling

What I learned from my time at Netflix

•Speed wins in the marketplace
•Remove friction from product development
•High trust, low process, no hand-offs between teams
•Freedom and responsibility culture
•Don’t do your own undifferentiated heavy lifting
•Use simple patterns automated by tooling
•Self service cloud makes impossible things instant

Cloud Adoption

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

Cloud Adoption

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

2009

Cloud Adoption

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

2009

Cloud Adoption

@adrianco’s
new job at the
intersection
of cloud and
Enterprise IT

%*&!”

By Simon Wardley http://enterpriseitadoption.com/

20142009

This is the year that
Enterprises finally

embraced cloud.

“It isn't what we don't know that
gives us trouble, it's what we

know that ain't so.”
!

Will Rogers

What separates
incumbents from

disruptors?

Assumptions

Optimizations

Assumption:
Process prevents

problems

Organizations build up
slow complex “Scar

tissue” processes

"This is the IT swamp draining manual for anyone who is
neck deep in alligators.”

Product
Development

Processes

Non-Cloud Product

Business
Need
• Documents
• Weeks

Approval
Process
• Meetings
• Weeks

Hardware
Purchase
• Negotiations
• Weeks

Software
Development
• Specifications
• Weeks

Deployment and
Testing
• Reports
• Weeks

Customer
Feedback
• It sucks!
• Weeks

Non-Cloud Product

Hardware provisioning is undifferentiated heavy lifting – replace it with IaaS

Business
Need
• Documents
• Weeks

Approval
Process
• Meetings
• Weeks

Hardware
Purchase
• Negotiations
• Weeks

Software
Development
• Specifications
• Weeks

Deployment and
Testing
• Reports
• Weeks

Customer
Feedback
• It sucks!
• Weeks

Non-Cloud Product

Hardware provisioning is undifferentiated heavy lifting – replace it with IaaS

Business
Need
• Documents
• Weeks

Approval
Process
• Meetings
• Weeks

Hardware
Purchase
• Negotiations
• Weeks

Software
Development
• Specifications
• Weeks

Deployment and
Testing
• Reports
• Weeks

Customer
Feedback
• It sucks!
• Weeks

IaaS
Cloud

Non-Cloud Product

Hardware provisioning is undifferentiated heavy lifting – replace it with IaaS

Business
Need
• Documents
• Weeks

Software
Development
• Specifications
• Weeks

Deployment and
Testing
• Reports
• Weeks

Customer
Feedback
• It sucks!
• Weeks

Process Hand-Off Steps for
Product Development on IaaS

Product Manager

Development Team

QA Integration
Team

Operations Deploy
Team

BI Analytics Team

IaaS Based Product

Business Need
• Documents
• Weeks

Software Development
• Specifications
• Weeks

Deployment and Testing
• Reports
• Days

Customer Feedback
• It sucks!
• Days

IaaS Based Product

Business Need
• Documents
• Weeks

Software Development
• Specifications
• Weeks

Deployment and Testing
• Reports
• Days

Customer Feedback
• It sucks!
• Days

etc…

IaaS Based Product

Business Need
• Documents
• Weeks

Software Development
• Specifications
• Weeks

Deployment and Testing
• Reports
• Days

Customer Feedback
• It sucks!
• Days

etc…

IaaS Based Product

Software provisioning is undifferentiated heavy lifting – replace it with PaaS

Business Need
• Documents
• Weeks

Software Development
• Specifications
• Weeks

Deployment and Testing
• Reports
• Days

Customer Feedback
• It sucks!
• Days

etc…

IaaS Based Product

Software provisioning is undifferentiated heavy lifting – replace it with PaaS

Business Need
• Documents
• Weeks

Software Development
• Specifications
• Weeks

Deployment and Testing
• Reports
• Days

Customer Feedback
• It sucks!
• Days

PaaS
Cloud

etc…

IaaS Based Product

Software provisioning is undifferentiated heavy lifting – replace it with PaaS

Business Need
• Documents
• Weeks

Software Development
• Specifications
• Weeks

Customer Feedback
• It sucks!
• Days

etc…

Process Hand-Off Steps for
Feature Development on PaaS

Product Manager

Developer

BI Analytics Team

PaaS Based Product

Business Need
• Discussions
• Days

Software Development
• Code
• Days

Customer Feedback
• Fix this Bit!
• Hours

etc…

PaaS Based Product

Building your own business apps is undifferentiated heavy lifting – use SaaS

Business Need
• Discussions
• Days

Software Development
• Code
• Days

Customer Feedback
• Fix this Bit!
• Hours

etc…

PaaS Based Product

Building your own business apps is undifferentiated heavy lifting – use SaaS

Business Need
• Discussions
• Days

Software Development
• Code
• Days

Customer Feedback
• Fix this Bit!
• Hours

SaaS/
BPaaS
Cloud

etc…

PaaS Based Product

Building your own business apps is undifferentiated heavy lifting – use SaaS

Business Need
• Discussions
• Days

Customer Feedback
• Fix this Bit!
• Hours

etc…

SaaS Based Business Application
Development

Business Need
•GUI Builder
•Hours

Customer Feedback
•Fix this bit!
•Seconds

SaaS Based Business Application
Development

Business Need
•GUI Builder
•Hours

Customer Feedback
•Fix this bit!
•Seconds

and thousands more…

Observe

Orient

Decide

Act Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

Model
Hypotheses

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

Model
Hypotheses

BIG DATA

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Model
Hypotheses

BIG DATA

INNOVATION

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery

Observe

Orient

Decide

Act

Land grab
opportunity Competitive

Move

Customer Pain
Point

Analysis

JFDI

Plan Response

Share Plans

Incremental
Features

Automatic
Deploy

Launch AB
Test

Model
Hypotheses

BIG DATA

INNOVATION

CULTURE

CLOUD

Measure
Customers

Continuous
Delivery

Release Plan

Developer

Developer

Developer

Developer

Developer

QA Release
Integration

Ops Replace Old
With New

Release

Monolithic service updates

Works well with a small number
of developers and a single
language like php, java or ruby

Release Plan

Developer

Developer

Developer

Developer

Developer

QA Release
Integration

Ops Replace Old
With New

Release

Bugs

Monolithic service updates

Works well with a small number
of developers and a single
language like php, java or ruby

Release Plan

Developer

Developer

Developer

Developer

Developer

QA Release
Integration

Ops Replace Old
With New

Release

Bugs

Bugs

Monolithic service updates

Works well with a small number
of developers and a single
language like php, java or ruby

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Immutable microservice deployment
is faster, scales with large teams and
diverse platform components

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Immutable microservice deployment
is faster, scales with large teams and
diverse platform components

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Bugs

Immutable microservice deployment
is faster, scales with large teams and
diverse platform components

Developer

Developer

Developer

Developer

Developer

Old Release Still
Running

Release Plan

Release Plan

Release Plan

Release Plan

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Deploy
Feature to
Production

Bugs

Deploy
Feature to
Production

Immutable microservice deployment
is faster, scales with large teams and
diverse platform components

Non-Destructive Production Updates

● “Immutable Code” Service Pattern

● Existing services are unchanged, old code remains in service

● New code deploys as a new service group

● No impact to production until traffic routing changes

● A|B Tests, Feature Flags and Version Routing control traffic

● First users in the test cell are the developer and test engineers

● A cohort of users is added looking for measurable improvement

● Finally make default for everyone, keeping old code for a while

What Happened?
Rate of change

increased

Cost and size and
risk of change

reduced

Disruptor
Continuous

Delivery

Future
Disruption

Open Source Disruption

Follow developers not dollars
!
Replacing expensive with
free leads to an extreme case
of Jevon’s Paradox

0

25

50

75

100

Ignore Ignore Worry Dead
% Open source adoption by new installations
% Incumbent revenue

Ecosystem Transitions

Languages are
the foundations
of ecosystems

Ecosystem Transitions

Languages are
the foundations
of ecosystems

1990’s

Ecosystem Transitions

Languages are
the foundations
of ecosystems

1990’s

2000’s

Ecosystem Transitions

Languages are
the foundations
of ecosystems

1990’s

2000’s

2010’s

Evolution of Deployment Tools

Evolution of Deployment Tools

Evolution of Deployment Tools

Evolution of Deployment Tools

Evolution of Deployment Tools

Microservices

A Microservice Definition
!

Loosely coupled service oriented
architecture with bounded contexts

A Microservice Definition
!

Loosely coupled service oriented
architecture with bounded contexts

If every service has to be
updated at the same time
it’s not loosely coupled

A Microservice Definition
!

Loosely coupled service oriented
architecture with bounded contexts

If every service has to be
updated at the same time
it’s not loosely coupled

If you have to know too much about surrounding
services you don’t have a bounded context. See the
Domain Driven Design book by Eric Evans.

Separate Concerns with Microservices

http://en.wikipedia.org/wiki/Conway's_law

● Invert Conway’s Law – teams own service groups and backend stores

● One “verb” per single function micro-service, size doesn’t matter

● One developer independently produces a micro-service

● Each micro-service is it’s own build, avoids trunk conflicts

● Deploy in a container: Tomcat, AMI or Docker, whatever…

● Stateless business logic. Cattle, not pets.

● Stateful cached data access layer using replicated ephemeral instances

NetflixOSS - High Availability Patterns

● Business logic isolation in stateless micro-services

● Immutable code with instant rollback

● Auto-scaled capacity and deployment updates

● Distributed across availability zones and regions

● De-normalized single function NoSQL data stores

● See over 40 NetflixOSS projects at netflix.github.com

● Get “Technical Indigestion” trying to keep up with techblog.netflix.com

Cloud Native
Monitoring and
Microservices

Cloud Native
● High rate of change

Code pushes can cause floods of new instances and metrics
Short baseline for alert threshold analysis – everything looks unusual

● Ephemeral Configurations
Short lifetimes make it hard to aggregate historical views
Hand tweaked monitoring tools take too much work to keep running

● Microservices with complex calling patterns
End-to-end request flow measurements are very important
Request flow visualizations get overwhelmed

Microservice Based Architectures

See http://www.slideshare.net/LappleApple/gilt-from-monolith-ruby-app-to-micro-service-scala-service-architecture

“Death Star” Architecture Diagrams

As visualized by Appdynamics, Boundary.com and Twitter internal tools

“Death Star” Architecture Diagrams

Netflix Gilt Groupe (12 of 450) Twitter

As visualized by Appdynamics, Boundary.com and Twitter internal tools

Continuous Delivery and DevOps

●Changes are smaller but more frequent

● Individual changes are more likely to be broken

●Changes are normally deployed by developers

●Feature flags are used to enable new code

● Instant detection and rollback matters much more

Whoops! I didn’t mean that!
Reverting… 

 
Not cool if it takes 5 minutes to see it failed and 5 more to see a fix  
 No-one notices if it only takes 5 seconds to detect and 5 to see a fix

NetflixOSS Hystrix/Turbine Circuit Breaker

http://techblog.netflix.com/2012/12/hystrix-dashboard-and-turbine.html

NetflixOSS Hystrix/Turbine Circuit Breaker

http://techblog.netflix.com/2012/12/hystrix-dashboard-and-turbine.html

Low Latency SaaS Based Monitors

www.vividcortex.com and www.boundary.com

Metric to display latency needs to be
less than human attention span (~10s)

Separation of Concerns  
 

Bounded Contexts

Forward Thinking

Forward Thinking

Forward Thinking

Forward Thinking

http://eugenedvorkin.com/seven-micro-services-architecture-advantages/

Any Questions?

Disclosure: some of the companies mentioned are Battery Ventures Portfolio Companies
See www.battery.com for a list of portfolio investments

● Battery Ventures http://www.battery.com
● Adrian’s Blog http://perfcap.blogspot.com
● Slideshare http://slideshare.com/adriancockcroft
!

● Monitorama Opening Keynote Portland OR - May 7th, 2014 - Video available
● GOTO Chicago Opening Keynote May 20th, 2014
● Qcon New York – Speed and Scale - June 11th, 2014 - Video available
● Structure - Cloud Trends June 19th, 2014 - Video available
● GOTO Copenhagen/Aarhus – Denmark – Sept 25th, 2014
● DevOps Enterprise Summit - San Francisco - Oct 21-23rd, 2014
● GOTO Berlin - Germany - Nov 6th, 2014
● AWS Re:Invent - Las Vegas - November 14th, 2014

