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‘ Typical reactions to my Netflix talks...

“What Netflix is doing

won’t work”
- 2010

“You guys are
crazy! Can't

believe it”
- 2009

It only works for
‘Unicorns’ like
Netflix”

— 2011

“We'd like to do
that but can’t”

- 2012

“We’re on our way using
Netflix OSS code”

- 2013
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‘ What | learned from my time at Netflix

-Speed wins in the marketplace

-Remove friction from product development

-High trust, low process, no hand-offs between teams
-Freedom and responsibility culture

-Don’t do your own undifferentiated heavy lifting
-Use simple patterns automated by tooling

-Self service cloud makes impossible things instant
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This 1s the year that
Enterprises finally
embraced cloud.
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“It isn't what we don't know that
gives us trouble, it's what we
know that ain't so.”

Will Rogers
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What separates

incumbents from
disruptors?
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Assumptions



Optimizations
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— Assumption:
Process prevents
problems
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Organizations build up
slow complex “Scar
tissue” processes




"This is the IT swamp draining manual for anyone who is
neck deep in alligators.”
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B Hardware provisioning is undifferentiated heavy lifting — replace it with IaaS
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laaS Based Product

amazon =3 B Windows Azure SOFTLAY=R'

web services™

Business Need Software Development
* Documents » Specifications

» Weeks * Weeks

openstack

Eumus etc. ..

Customer Feedback
* |t sucks!

* Days

B Software provisioning is undifferentiated heavy lifting — replace it with PaaS



Process Hand-Off Steps for
Feature Development on Paa$S

Product Manager

Developer

BI Analytics Team

.
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SaaS Based Business Application
Development

@ mendix I platfora and thousands more...

the app platform
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Immutable microservice deployment
is faster, scales with large teams and
Developer diverse platform components
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Immutable microservice deployment
is faster, scales with large teams and
diverse platform components

Developer

Deploy
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Non-Destructive Production Updates

e “Immutable Code” Service Pattern
e Existing services are unchanged, old code remains in service
e New code deploys as a new service group
e No impact to production until traffic routing changes
e A|B Tests, Feature Flags and Version Routing control traffic
e First users in the test cell are the developer and test engineers
® A cohort of users is added looking for measurable improvement

e Finally make default for everyone, keeping old code for a while

-



‘ What Happened?

Rate of change
increased

g

Cost and size and
risk of change
reduced

.
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@ Open Source Disruption

-

100
. Follow developers not dollars
50 Replacing expensive with

free leads to an extreme case

25
of Jevon’s Paradox

0 . . .
Ignore Ignore Worry Dead

® % Open source adoption by new installations
% Incumbent revenue
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@ Ecosystem Transitions

Languages are
the foundations
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@ Ecosystem Transitions

C++ 1990’s Languages are
the foundations
= (CH =2000’s

java of ecosystems

— Pgthon“‘ @’:”50 2010’s
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Microservices
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A Microservice Definition

Loosely coupled service oriented
architecture with bounded contexts

-
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If every service has to be 1
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If every service has to be 1

updated at the same time

it’s not loosely coupled —>—D > >

\gﬁcroservice Definition
@ely coupled’serv ted

architecture wit ounded contexts

If you have to know too much about surrounding
services you don’t have a bounded context. See the
Domain Driven Design book by Eric Evans.




Separate Concerns with Microservices

e Invert Conway’s Law — teams own service groups and backend stores
e One “verb” per single function micro-service, size doesn’t matter

e One developer independently produces a micro-service

e Each micro-service is it’s own build, avoids trunk conflicts

e Deploy in a container: Tomcat, AMI or Docker, whatever...

e Stateless business logic. Cattle, not pets.

e Stateful cached data access layer using replicated ephemeral instances

——>
http://en.wikipedia.org/wiki/Conway's_law (



NetflixOSS - High Availability Patterns

e Business logic isolation in stateless micro-services
e Immutable code with instant rollback

e Auto-scaled capacity and deployment updates

e Distributed across availability zones and regions

e De-normalized single function NoSQL data stores

e See over 40 NetflixOSS projects at netflix.github.com

e Get “Technical Indigestion” trying to keep up with techblog.netflix.com

.
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Cloud Native
Monitoring and
Microservices

-



Cloud Native

e High rate of change
Code pushes can cause floods of new instances and metrics
Short baseline for alert threshold analysis — everything looks unusual

e Ephemeral Configurations
Short lifetimes make it hard to aggregate historical views
Hand tweaked monitoring tools take too much work to keep running

e Microservices with complex calling patterns
End-to-end request flow measurements are very important
Request flow visualizations get overwhelmed

-



‘ Microservice Based Architectures

AS OF LAST WEEK WE HAVE MORE
THAN
450 SERVICES

See http://www.slideshare.net/LappleApple/gilt-from-monolith-ruby-app-to-micro-service-scala-service-architecture



“Death Star” Architecture Diagrams

As visualized by Appdynamics, Boundary.com and Twitter internal tools
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Gilt Groupe (12 of 450)

As visualized by Appdynamics, Boundary.com and Twitter internal tools



‘ Continuous Delivery and DevOps

e Changes are smaller but more frequent

e Individual changes are more likely to be broken
e Changes are normally deployed by developers
e Feature flags are used to enable new code

e Instant detection and rollback matters much more
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Whoops! I didn’t mean that!
Reverting...

Not cool if it takes 5 minutes to see it failed and 5 more to see a fix
No-one notices if it only takes 5 seconds to detect and 5 to see a fix

-
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Low Latency SaaS Based Monitors
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Metric to display latency needs to be
less than human attention span (~10s)

-
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Separation of Concerns

Bounded Contexts

-
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@ Forward Thinking

Jez Humble, Joanne Molesky & Barry 0'Reilly
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ENTERPRISE - —

Adopting Continuous MONOLITHIC/LAYERED MICRO SERVICES

Delivery, DevOps, and

Lean Startup at Scale

O'REILLY" fric Ries, Series Editor



‘ Any Questions?

e Battery Ventures http://www.battery.com

e Adrian’s Blog http://perfcap.blogspot.com

e Slideshare http://slideshare.com/adriancockcroft

e Monitorama Opening Keynote Portland OR - May 7", 2014 - Video available
GOTO Chicago Opening Keynote May 20™ 2014
Qcon New York — Speed and Scale - June 11" 2014 - Video available
Structure - Cloud Trends June 19th, 2014 - Video available

DevOps Enterprise Summit - San Francisco - Oct 21-23rd, 2014
GOTO Berlin - Germany - Nov 6th, 2014

o
o
o
e GOTO Copenhagen/Aarhus — Denmark — Sept 25" 2014
o
o
e AWS Re:Invent - Las Vegas - November 14th, 2014

Disclosure: some of the companies mentioned are Battery Ventures Portfolio Companies
See www.battery.com for a list of portfolio investments




