&

Fast Delivery

2 >




adrian cockcroft @adrianco
Baffling-late-adopters as a Service

Retweeted by Andrew Clay Shafer
Expand

10 Apr




‘ Typical reactions to my Netflix talks...




‘ Typical reactions to my Netflix talks...

“You guys are
crazy! Can’t

believe it”
— 2009



‘ Typical reactions to my Netflix talks...

“What Netflix is doing

won’t work”
- 2010

“You guys are
crazy! Can’t

believe it”
- 2009



‘ Typical reactions to my Netflix talks...

“What Netflix is doing

won’t work”
- 2010

“You guys are
crazy! Can’t

believe it”
- 2009

It only works for
‘Unicorns’ like
Netflix”

- 201



‘ Typical reactions to my Netflix talks...

“What Netflix is doing

won’t work”
- 2010

“You guys are
crazy! Can't

believe it”
- 2009

It only works for
‘Unicorns’ like
Netflix”

— 2011

“We'd like to do
that but can’t”

- 2012




‘ Typical reactions to my Netflix talks...

“What Netflix is doing

won’t work”
- 2010

“You guys are
crazy! Can't

believe it”
- 2009

It only works for
‘Unicorns’ like
Netflix”

— 2011

“We'd like to do
that but can’t”

- 2012

“We’re on our way using
Netflix OSS code”

- 2013




N\

‘ What | learned from my time at Netflix

-




N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace



N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace
-Remove friction from product development



N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace
-Remove friction from product development
-High trust, low process, no hand-offs between teams

.



N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace

-Remove friction from product development

-High trust, low process, no hand-offs between teams
-Freedom and responsibility culture

.



N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace

-Remove friction from product development

-High trust, low process, no hand-offs between teams
-Freedom and responsibility culture

-Don’t do your own undifferentiated heavy lifting

.



N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace

-Remove friction from product development

-High trust, low process, no hand-offs between teams
-Freedom and responsibility culture

-Don’t do your own undifferentiated heavy lifting

-Use simple patterns automated by tooling



N\

‘ What | learned from my time at Netflix

-Speed wins in the marketplace

-Remove friction from product development

-High trust, low process, no hand-offs between teams
-Freedom and responsibility culture

-Don’t do your own undifferentiated heavy lifting
-Use simple patterns automated by tooling

-Self service cloud makes impossible things instant

=



© Cloud Adoption

Adoption

Rest of World

Enterprise IT

H : H ' /1 said ! :
Ignore i Ignore | Ignore | "No" i "No" / "No" i"Oh No"i"Oh %*&!”
: : : : { dammit | :

By Simon Wardley http://enterpriseitadoption.com/ Tlme



© Cloud Adoption

Adoption

Rest of World

' : : ' /1 said !
Ignore i Ignore : Igfore | "No" } "No" }
: : : : i dammit |

Enterprise IT

"NO" §"Oh NO" é "Oh 0/0*&!”

By Simon Wardley http://enterpriseitadoption.com/

Time



© Cloud Adoption

Adoption

Rest of World

Enterprise IT

| said 5
nNou E"Oh NO" E "Oh 0/0*&!”

Ignore i Ignore : Igfore | "No" } "No" }
: ; ' ' i dammit

By Simon Wardley http://enterpriseitadoption.com/ Tlme



Cloud Adoption

Adoption J
L

' "Noll
damm

i/ | said 5
1"Oh No":"Oh %*&!”
it :

BV
2014

Enterprise IT

By Simon Wardley http://enterpriseitadoption.com/

Time

Battery Ventur

@adrianco’s

new job at the

intersection
of cloud and
Enterprise IT

.



L

|G—

This 1s the year that
Enterprises finally
embraced cloud.

-



l .
—> D>>p—> >

“It isn't what we don't know that
gives us trouble, it's what we
know that ain't so.”

Will Rogers




ol ~
What separates

incumbents from
disruptors?




“ Y pTas

Assumptions



Optimizations

-



5

— Assumption:
Process prevents
problems



S ~

Organizations build up
slow complex “Scar
tissue” processes




"This is the IT swamp draining manual for anyone who is
neck deep in alligators.”

. Joolosd Xrudotd Y.L




o

Product
Development
Processes



‘ Non-Cloud Product

(b »e

Business Approval
Need Process
* Documents » Meetings

* Weeks * Weeks

Hardware Software Deployment and
Purchase Development Testing

* Negotiations + Specifications * Reports

* Weeks » Weeks » Weeks

Customer
Feedback
* |t sucks!

* Weeks



Non-Cloud Product

e 0 F) == &

Business Approval Hardware Software Deployment and Customer
Need Process Purchase Development Testing Feedback
* Reports * It sucks!

* Documents » Meetings * Negotiations * Specifications
* Weeks » Weeks » Weeks » Weeks » Weeks » Weeks

B Hardware provisioning is undifferentiated heavy lifting — replace it with IaaS

.



Non-Cloud Product

A

Business
Need

== I

Approva. .rdware Software Deployment and Customer

Process IaaS ~ Purchase
» Meetings Cloud » Negotiations

* Weeks ‘leeks

Development Testing Feedback
* Specifications * Reports * It sucks!

* Weeks * Weeks * Weeks

* Documents
* Weeks

B Hardware provisioning is undifferentiated heavy lifting — replace it with IaaS

.



Non-Cloud Product

A

Business
Need

== I

Software Deployment and Customer

Development Testing Feedback
* Specifications * Reports * It sucks!

* Weeks * Weeks * Weeks

* Documents
* Weeks

B Hardware provisioning is undifferentiated heavy lifting — replace it with IaaS

.



Process Hand-Off Steps for
Product Development on laaS

Product Manager
9
Development Team
¥

Team
9

Team
¥




laaS Based Product

Business Need Software Development Deployment and Testing Customer Feedback
* Documents » Specifications * Reports * It sucks!

* Weeks * Weeks * Days * Days




laaS Based Product

amazon s £ Windows Azure SOFTLAG=R. n EucaLyPTUus €fC...
web services™ openstack

Business Need Software Development Deployment and Testing Customer Feedback
* Documents » Specifications * Reports * It sucks!

* Weeks * Weeks * Days * Days



laaS Based Product

amazon <> B incows A SOFTLAY=R' n Eumus ete...

web services™ openstack

Business Need Software Development Deployment and Testing Customer Feedback
* Documents » Specifications * Reports * It sucks!

* Weeks * Weeks * Days * Days



laaS Based Product

amazon <> B incows A SOFTLAY=R' n Eumus ete...

web services™ openstack

Business Need Software Development Deployment and Testing Customer Feedback
* Documents » Specifications * Reports * It sucks!

* Weeks * Weeks * Days * Days

B Software provisioning is undifferentiated heavy lifting — replace it with PaaS



laaS Based Product

amazZon @ £ Windows Azure SDFTEF@EE;:!S; n Eumus etC . nm

web services™ openstack

Business Need Software Development : Customer Feedback
* Documents » Specifications . * It sucks!

* Weeks * Weeks . 4 * Days

B Software provisioning is undifferentiated heavy lifting — replace it with PaaS



laaS Based Product

amazon =3 B Windows Azure SOFTLAY=R'

web services™

Business Need Software Development
* Documents » Specifications

» Weeks * Weeks

openstack

Eumus etc. ..

Customer Feedback
* |t sucks!

* Days

B Software provisioning is undifferentiated heavy lifting — replace it with PaaS



Process Hand-Off Steps for
Feature Development on Paa$S

Product Manager

Developer

BI Analytics Team

.



PaaS Based Product

H heroku s

CLOUD
FOUNDRY

Business Need Software Development Customer Feedback
» Discussions * Code * Fix this Bit!

» Days » Days * Hours



PaaS Based Product
Hheroku $ “ opcero etc..

FOUNDRY Google OC er

- vvvvvvvvv @

Business Need Software Development Customer Feedback
» Discussions * Code * Fix this Bit!

» Days » Days * Hours

® Building your own business apps is undifferentiated heavy lifting — use SaaS



PaaS Based Product

otc...

Business Need : Customer Feedback
* Discussions S * Fix this Bit!

* Days

® Building your own business apps is undifferentiated heavy lifting — use SaaS

o



)

PaaS Based Product
cocero > SN etc...

ocker

H|heroku cEny “

CLOUD
FOUNDRY GOOS[Q

Business Need

» Discussions .
* Days

Customer Feedback
 Fix this Bit!
* Hours

® Building your own business apps is undifferentiated heavy lifting — use SaaS

o



SaaS Based Business Application
Development

8

Business Need
+GUI Builder

Customer Feedback
*Fix this bit!

*Seconds

*Hours




SaaS Based Business Application
Development

@ mendix I platfora and thousands more...

the app platform

8

Business Need
+GUI Builder

Customer Feedback
*Fix this bit!

*Seconds

*Hours




Act

4

Continuous
Delivery

» ®







INNOVATION

/-‘Q

4

Act Contl.nuous
Delivery

» ®




INNOVATION

/-‘(:)
]
S s

Act Contt.nuous
Delivery

O




INNOVATION

/-‘Q
<
L

Act Continuous
BIG DATA

Delivery

i




INNOVATION




INNOVATION

Continuous
Delivery

BIG DATA

CULTURE



INNOVATION

Continuous

Delivery BI G DA TA

v
corene



INNOVATION

Continuous
Delivery

BIG DATA

cuLrure BN



INNOVATION

Continuous
Delivery

BIG DATA

cuLrure BN



Monolithic service updates

Developer

/ Developer \
Release Plan IQA Releqse
ntegration

Developer

Works well with a small number
Developer of developers and a single
language like php, java or ruby



Monolithic service updates

Developer

Pho>
/@

Release Plan Developer IQA Releqse
ntegration
\)/“—,L/—;,;r'a)

/D
!

L) —

Developer

®he) Works well with a small number
Developer of developers and a single
language like php, java or ruby




Monolithic service updates

Developer

Pho>
/@

Release Plan Developer IQA Releqse
ntegration
\)/“—,L/—;,;r'a)

/D
!

L) —

Developer

®he) Works well with a small number
Developer of developers and a single
language like php, java or ruby



Immutable microservice deployment
is faster, scales with large teams and
Developer diverse platform components

I
F

—>
Release Plan — ‘_'
@ python @
Release Plan
»

Ruby

Release Plan Developer

N\ —gp

)

Release Plan



Immutable microservice deployment
is faster, scales with large teams and
diverse platform components

Developer

Deploy
Feature to
Release Plan — ‘_' Production

@ python
= Deploy
mma Featureto

Release Plan
7 Production
Release Plan Deploy
Fes Feature to

\—50
| Production

Release Plan Deuveloper Deploy
Feature to

Production



Immutable microservice deployment
is faster, scales with large teams and
diverse platform components

Developer

Deploy
Feature to
Release Plan — 4’ Production

@ python
= Deploy
mma Featureto

Release Plan
7 Production
Release Plan Deploy
Fes Feature to

\—50
| Production

Release Plan Developer Deploy
Feature to

Production Jallef



Immutable microservice deployment
is faster, scales with large teams and
diverse platform components

Developer

Deploy
Feature to
Release Plan — 4’ Production

@ python
= Deploy
mma Featureto

Release Plan
7 Production
Release Plan Deploy
Fes Feature to

\—50
| Production

Release Plan Developer Deploy Deploy
Feature to Feature to

Production Jallef Production



Non-Destructive Production Updates

e “Immutable Code” Service Pattern
e Existing services are unchanged, old code remains in service
e New code deploys as a new service group
e No impact to production until traffic routing changes
e A|B Tests, Feature Flags and Version Routing control traffic
e First users in the test cell are the developer and test engineers
® A cohort of users is added looking for measurable improvement

e Finally make default for everyone, keeping old code for a while

-



‘ What Happened?

Rate of change
increased

g

Cost and size and
risk of change
reduced

.



L

|

Disruptor
Continuous
Delivery
—



L

|G—

Future
Disruption

-



N\

@ Open Source Disruption

-

100
. Follow developers not dollars
50 Replacing expensive with

free leads to an extreme case

25
of Jevon’s Paradox

0 . . .
Ignore Ignore Worry Dead

® % Open source adoption by new installations
% Incumbent revenue



N\

@ Ecosystem Transitions

Languages are
the foundations
of ecosystems

.



N\

@ Ecosystem Transitions

C++ 1990’s Languages are
the foundations
of ecosystems

.



N\

@ Ecosystem Transitions

C++ 1990’s Languages are
the foundations
= (CH =2000’s

java of ecosystems

.




N\

@ Ecosystem Transitions

C++ 1990’s Languages are
the foundations
= (CH =2000’s

java of ecosystems

— Pgthon“‘ @’:”50 2010’s

.



Evolution of Deployment Tools



Evolution of Deployment Tools

G+t #CFENgine



Evolution of Deployment Tools

C++ #CFENngine

Apuppet

Ruby



Evolution of Deployment Tools
#CFEngine
APupREt 1%,

@ python’ (A

ANSIBLE SALTSTACK




Evolution of Deployment Tools

#CFEngine

Apuppet
0o

ANSIBLE SALTSTACK




L

|G—

Microservices

-



1 >—> D>Pp—p >

A Microservice Definition

Loosely coupled service oriented
architecture with bounded contexts

-



L

If every service has to be 1

updated at the same time

it’s not loosely coupled —>—D > >

\gﬁcroservice Definition
@ely coupled’service oriented

architecture with bounded contexts

-




L

If every service has to be 1

updated at the same time

it’s not loosely coupled —>—D > >

\gﬁcroservice Definition
@ely coupled’serv ted

architecture wit ounded contexts

If you have to know too much about surrounding
services you don’t have a bounded context. See the
Domain Driven Design book by Eric Evans.




Separate Concerns with Microservices

e Invert Conway’s Law — teams own service groups and backend stores
e One “verb” per single function micro-service, size doesn’t matter

e One developer independently produces a micro-service

e Each micro-service is it’s own build, avoids trunk conflicts

e Deploy in a container: Tomcat, AMI or Docker, whatever...

e Stateless business logic. Cattle, not pets.

e Stateful cached data access layer using replicated ephemeral instances

——>
http://en.wikipedia.org/wiki/Conway's_law (



NetflixOSS - High Availability Patterns

e Business logic isolation in stateless micro-services
e Immutable code with instant rollback

e Auto-scaled capacity and deployment updates

e Distributed across availability zones and regions

e De-normalized single function NoSQL data stores

e See over 40 NetflixOSS projects at netflix.github.com

e Get “Technical Indigestion” trying to keep up with techblog.netflix.com

.




I -

Cloud Native
Monitoring and
Microservices

-



Cloud Native

e High rate of change
Code pushes can cause floods of new instances and metrics
Short baseline for alert threshold analysis — everything looks unusual

e Ephemeral Configurations
Short lifetimes make it hard to aggregate historical views
Hand tweaked monitoring tools take too much work to keep running

e Microservices with complex calling patterns
End-to-end request flow measurements are very important
Request flow visualizations get overwhelmed

-



‘ Microservice Based Architectures

AS OF LAST WEEK WE HAVE MORE
THAN
450 SERVICES

See http://www.slideshare.net/LappleApple/gilt-from-monolith-ruby-app-to-micro-service-scala-service-architecture



“Death Star” Architecture Diagrams

As visualized by Appdynamics, Boundary.com and Twitter internal tools




il
iany Sammt
OB

Twitter

“Death Star” Architecture Diagrams

Aop

§
E

Gilt Groupe (12 of 450)

As visualized by Appdynamics, Boundary.com and Twitter internal tools



‘ Continuous Delivery and DevOps

e Changes are smaller but more frequent

e Individual changes are more likely to be broken
e Changes are normally deployed by developers
e Feature flags are used to enable new code

e Instant detection and rollback matters much more




I >—> D> p—p- >

Whoops! I didn’t mean that!
Reverting...

Not cool if it takes 5 minutes to see it failed and 5 more to see a fix
No-one notices if it only takes 5 seconds to detect and 5 to see a fix

-



NetflixOSS Hystrix/Turbine Circuit Breaker

ABCaliServicelnternal

191,390 0.0 %
\". ‘ 0
/ 1
Y A / Host: 32.9/s
O Cluster: 19,139.6/s
Circuit
Hosts 581 Sh 17ms
Median 6ms 99

64ms
Maean 10ms 5951 114ms

CryptexDecipher
. 74,718 | 92 1 0.0 %
-0 53
“"""u".\/\/\”‘ ﬂ‘l\' .’/ Host: 12.9/s
v Clustor: 7,486.8/s
Crcuit (
Hosts 581 “th o 1ims

Madian 3ms 9h 6Tms
Mean  10ms  99.5t1h  40Sms

\ / 3\ | ~ 0 0
0 \ /| 0
e / " | / \ \ I'
\_J/\ ~——/ Host: 10.4/s \

WM CinematchGetPredictions
190,804 0.0 % 80,105 | 5 0.0 %
! , 0 50 “\ N 00
\, / 0 /" 0
k\/\'\ J Host: 32.8/s N\ /\ f Host: 13.8/s
\ / \\I \/l\‘
tuster: 19,085.4/s - Cluster: 8,011.0/s
Circuit Closed Circuit Closed
Hosts 581 90th Tms 581 o0th - 22ms
Medan Oms 99th 34ms Ims 99th  122ms
Mean ims 20510 49ms 1ims 55510 312ms
CinematchGetMovieRatings VideoHistoryGetBookmarks
60,672 | 2 1 0.0 % A 48,281 | 60 1 0.1 %
00 |

\ [\ \ A Host: 8.3/s
J \/ Vv
Cluster: 6,067.4/s - ‘ cluster: 4,834.1/s
Circuit Closed Circuit Closed
Hosts 581 90t 4lms 581 90th 26ms
Medan  14ms 99th 143ms 8ms J9th - 104ms
Mean 2ims 995! 215ms

13ms 99510 158ms




NetflixOSS Hystrix/Turbine Circuit Breaker

ABCaliServiceinternal
191,390

0.0%
, 05
\\_‘\/\\

IdentityCookieAuth CinematchGetPredictions
. 190,804 0.0 % 80,105 0.0 %
\ , 0 50 “\ N 0 0
1 \ / 0 [ 0
/ N f \ /
-/ Host: 32.9/s “\/\\\I / Host: 32.8/s AV /\ - Host: 13.8/s
O Cluster: 19,139.6/s 0 cster: 19,085.4/s VA Cluster: 8,011.0/s
Crcuit ( ] Circuit Closed Circuit Closed
Hosts 581 “oth o 17ms Hosts 581 90th 1ms Hosts 581 90th - 22ms
Median 6ms 64ms Medan Oms 99ty 34ms Median Ims 99th  122ms
Mean 10ms 9951h 114ms Mean ims 29510 49ms Maean 1ims 9951h 312ms
CryptexDecipher CinematchGetMovieRatings VideoHistoryGetBookmarks
74,718 | 92 1 0.0 % 60,672 2 |1 0.0 % 4| 744 |99 9%
\ 0 0 N 00 20,837 g
\ - 58 0
0. o nost: 129/ S/ wost: 10.4/s Host: 6.0/
v Cluster: 7,486.8/s Cluster: 6,067.4/s cluster: 2,158.0/s
Crcuit Closed Circuit Closed Circuit Open
Hosts 581 S0th 11ms Hosts 581 90th 41ms Hosts 318 90th
Median 3ms n 67ms Medan Median 1ms
Mean 10ms 0051 405ms Mean Mean

9ms
99th  354ms
15ms 99.5th 1532ms




Low Latency SaaS Based Monitors

N %
v

VividCortex

== —,

db-shard2

Time:

Impact:

Component:

CPU Activity

Disk Concurrency

Disk Throughput

Free Memory

Network Throughput

Top Processes
db-shard2

mysqid

Mar 31, 2014 5:45:07 PM

Severity 6.4353 Duration: 1 seconds

disk

S:4dmm 5:45m

405833% M an/\Jlythait s

www.vividcortex.com and www.boundary.com

&7 RESOLUTION

1 second

From

To
now (

KOBAYASHI
8090:TCP
232768:TCP
32768:TCP
RIAK PB
8087:TCP
RIAK HANDOFF
8099:TCP
2181:TCP
NA
2888:TCP
NA
5956:TCP
NA

3 FEB 13 14:07

FILTERS

/:\/\ {‘A‘J!Iﬂvﬂ\' Mj\/ﬂ/"“w\ﬁ WM Ai'ﬂ‘ \' /‘\'

—

1-second data collection and
real-time streaming processing
on all components of the
application stack

4’_D



I D> >

Metric to display latency needs to be
less than human attention span (~10s)

-



1 >—>- D>h—p- >

Separation of Concerns

Bounded Contexts

-



@ Forward Thinking




@ Forward Thinking

@4&’&



N\

@ Forward Thinking

-

Jez Humble, Joanne Molesky & Barry 0'Reilly

&\ —
T

Adopting Continuous
Delivery, DevOps, and
Lean Startup at Scale

O'REILLY" fric Ries, Senies [ditor



N\

@ Forward Thinking

Jez Humble, Joanne Molesky & Barry 0'Reilly

ey LEAN ] <t

ENTERPRISE - —

Adopting Continuous MONOLITHIC/LAYERED MICRO SERVICES

Delivery, DevOps, and

Lean Startup at Scale

O'REILLY" fric Ries, Series Editor



‘ Any Questions?

e Battery Ventures http://www.battery.com

e Adrian’s Blog http://perfcap.blogspot.com

e Slideshare http://slideshare.com/adriancockcroft

e Monitorama Opening Keynote Portland OR - May 7", 2014 - Video available
GOTO Chicago Opening Keynote May 20™ 2014
Qcon New York — Speed and Scale - June 11" 2014 - Video available
Structure - Cloud Trends June 19th, 2014 - Video available

DevOps Enterprise Summit - San Francisco - Oct 21-23rd, 2014
GOTO Berlin - Germany - Nov 6th, 2014

o
o
o
e GOTO Copenhagen/Aarhus — Denmark — Sept 25" 2014
o
o
e AWS Re:Invent - Las Vegas - November 14th, 2014

Disclosure: some of the companies mentioned are Battery Ventures Portfolio Companies
See www.battery.com for a list of portfolio investments




