
Building a Big Data
Machine Learning Platform

Cliff Click, CTO 0xdata
cliffc@0xdata.com
http://0xdata.com
http://cliffc.org/blog

mailto:cliffc@0xdata.com
mailto:cliffc@0xdata.com
http://0xdata.com/
http://0xdata.com/
http://cliffc.org/blog
http://cliffc.org/blog

2

H2O is...

● Pure Java, Open Source: 0xdata.com

● https://github.com/0xdata/h2o/

● A Platform for doing Parallel Distributed Math

● In-memory analytics: GLM, GBM, RF, Logistic Reg,

Deep Learning, PCA, Kmeans...

● Data munging & cleaning

● Accessible via REST & JSON, browser, Python,

R, Java, Scala

● And now Spark

https://github.com/0xdata/h2o/
https://github.com/0xdata/h2o/

3

Platform for doing Big Data Work

● “Anything” you want to do on Big 2-D Tables

● Most any Java that reads or writes a single row

– Plus read nearby rows, and/or computes a reduction

● Speed: data volume / memory bandwidth

● ~50G/sec / node, varies by hardware

● Data compressed: 2x to 4x better than gzip

● Data limited to: numbers & time & strings

● Table width: <1K fast, <10K works, <100K slower

● Table length: Limit of memory

4

What Can I Do With It?

5

Simple Data-Parallel Coding

● Map/Reduce Per-Row: Stateless

● Example from Linear Regression, Σ y2

● Auto-parallel, auto-distributed

● Fortran speed, Java Ease

double sumY2 = new MRTask() {

 double map(double d) { return d*d; }

 double reduce(double d1, double d2) {

 return d1+d2;

 }

}.doAll(vecY);

6

Simple Data-Parallel Coding

● Scala version in development:

MR {

 def map(A:Double) = A*A

 def reduce(B1, B2: Double) = B1+B2

}.doAll(vecY);

7

Simple Data-Parallel Coding

● Map/Reduce Per-Row: Statefull

● Linear Regression Pass1: Σ x, Σ y, Σ y2

class LRPass1 extends MRTask {

 double sumX, sumY, sumY2; // I Can Haz State?

 void map(double X, double Y) {

 sumX += X; sumY += Y; sumY2 += Y*Y;

 }

 void reduce(LRPass1 that) {

 sumX += that.sumX ;

 sumY += that.sumY ;

 sumY2 += that.sumY2;

 }

}

8

MR { var X, Y, X2=0.0; var n=0L

 def map(x,y:Double) = X=x; Y=y; X2=x*x; n=1

 def reduce(@@: self) =

 { X+=@@.X; Y+=@@.Y; X2+=@@.X2; n+=@@.n }

}.doAll(vecX,vecY)

Simple Data-Parallel Coding

● Scala version in development:

9

Simple Data-Parallel Coding

● Map/Reduce Per-Row: Batch Statefull

class LRPass1 extends MRTask {

 double sumX, sumY, sumY2;

 void map(Chunk CX, Chunk CY) {// Whole Chunks

 for(int i=0; i<CX.len; i++){// Batch!

 double X = CX.at(i), Y = CY.at(i);

 sumX += X; sumY += Y; sumY2 += Y*Y;

 }

 }

 void reduce(LRPass1 that) {

 sumX += that.sumX ;

 sumY += that.sumY ;

 sumY2 += that.sumY2;

 }

}

10

Other Simple Examples

● Filter & Count (underage males):

● (can pass in any number of Vecs or a Frame)

● Scala syntax

long sumY2 = new MRTask() {

 long map(long age, long sex) {

 return (age<=17 && sex==MALE) ? 1 : 0;

 }

 long reduce(long d1, long d2) {

 return d1+d2;

 }

}.doAll(vecAge, vecSex);

MR(0).map(_('age)<=17 && _('sex)==MALE)

 .reduce(add).doAll(frame);

11

Other Simple Examples

● Filter into new set (underage males):

● Can write or append subset of rows

– (append order is preserved)

class Filter extends MRTask {

 void map(Chunk CRisk, Chunk CAge, Chunk CSex){

 for(int i=0; i<CAge.len; i++)

 if(CAge.at(i)<=17 && CSex.at(i)==MALE)

 CRisk.append(CAge.at(i)); // build a set

 }

};

Vec risk = new AppendableVec();

new Filter().doAll(risk, vecAge, vecSex);

...risk... // all the underage males

12

Other Simple Examples

● Filter into new set (underage males):

● Can write or append subset of rows

– (append order is preserved)

class Filter extends MRTask {

 void map(Chunk CRisk, Chunk CAge, Chunk CSex){

 for(int i=0; i<CAge.len; i++)

 if(CAge.at(i)<=17 && CSex.at(i)==MALE)

 CRisk.append(CAge.at(i)); // build a set

 }

};

Vec risk = new AppendableVec();

new Filter().doAll(risk, vecAge, vecSex);

...risk... // all the underage males

13

Other Simple Examples

● Group-by: count of car-types by age

class AgeHisto extends MRTask {

 long carAges[][]; // count of cars by age

 void map(Chunk CAge, Chunk CCar) {

 carAges = new long[numAges][numCars];

 for(int i=0; i<CAge.len; i++)

 carAges[CAge.at(i)][CCar.at(i)]++;

 }

 void reduce(AgeHisto that) {

 for(int i=0; i<carAges.length; i++)

 for(int j=0; i<carAges[j].length; j++)

 carAges[i][j] += that.carAges[i][j];

 }

}

14

class AgeHisto extends MRTask {

 long carAges[][]; // count of cars by age

 void map(Chunk CAge, Chunk CCar) {

 carAges = new long[numAges][numCars];

 for(int i=0; i<CAge.len; i++)

 carAges[CAge.at(i)][CCar.at(i)]++;

 }

 void reduce(AgeHisto that) {

 for(int i=0; i<carAges.length; i++)

 for(int j=0; i<carAges[j].length; j++)

 carAges[i][j] += that.carAges[i][j];

 }

}

Other Simple Examples

● Group-by: count of car-types by age
Setting carAges in map() makes it an output field.
Private per-map call, single-threaded write access.

Must be rolled-up in the reduce call.

Setting carAges in map makes it an output field.
Private per-map call, single-threaded write access.

Must be rolled-up in the reduce call.

15

Other Simple Examples

● Uniques

● Uses distributed hash set

class Uniques extends MRTask {

 DNonBlockingHashSet<Long> dnbhs = new ...;

 void map(long id) { dnbhs.add(id); }

 void reduce(Uniques that) {

 dnbhs.putAll(that.dnbhs);

 }

};

long uniques = new Uniques().

 doAll(vecVistors).dnbhs.size();

16

Other Simple Examples

● Uniques

● Uses distributed hash set

class Uniques extends MRTask {

 DNonBlockingHashSet<Long> dnbhs = new ...;

 void map(long id) { dnbhs.add(id); }

 void reduce(Uniques that) {

 dnbhs.putAll(that.dnbhs);

 }

};

long uniques = new Uniques().

 doAll(vecVistors).dnbhs.size();

Setting dnbhs in <init> makes it an input field.
Shared across all maps(). Often read-only.

This one is written, so needs a reduce.

17

How Does It Work?

18

A Collection of Distributed Vectors

// A Distributed Vector

// much more than 2billion elements

class Vec {

 long length(); // more than an int's worth

 // fast random access

 double at(long idx); // Get the idx'th elem

 boolean isNA(long idx);

 void set(long idx, double d); // writable

 void append(double d); // variable sized

}

19

Distributed Data Taxonomy

A Single Vector

Vec

20

Distributed Data Taxonomy

A Very Large Single Vec

Vec
>> 2billion elements ●Java primitive

●Usually double

●Length is a long

●>> 2^31 elements

●Compressed
●Often 2x to 4x
●Random access

●Linear access is
 FORTRAN speed

21

JVM 4 Heap
32Gig

JVM 1 Heap
32Gig

JVM 2 Heap
32Gig

JVM 3 Heap
32Gig

Distributed Data Taxonomy

A Single Distributed Vec

Vec
>> 2billion elements ●Java Heap

●Data In-Heap
●Not off heap
●Split Across Heaps

●GC management
●Watch FullGC
●Spill-to-disk
●GC very cheap
●Default GC

●To-the-metal speed
●Java ease

22

JVM 4 Heap

JVM 1 Heap

JVM 2 Heap

JVM 3 Heap

Distributed Data Taxonomy

A Collection of Distributed Vecs

Vec Vec Vec Vec Vec

●Vecs aligned
 in heaps
●Optimized for
 concurrent access
●Random access
 any row, any JVM

●But faster if local...
 more on that later

23

JVM 4 Heap

JVM 1 Heap

JVM 2 Heap

JVM 3 Heap

Distributed Data Taxonomy

A Frame: Vec[]

age sex zip ID car

●Similar to R frame
●Change Vecs freely
●Add, remove Vecs
●Describes a row of
 user data
●Struct-of-Arrays
 (vs ary-of-structs)

24

JVM 4 Heap

JVM 1 Heap

JVM 2 Heap

JVM 3 Heap

Distributed Data Taxonomy

A Chunk, Unit of Parallel Access

Vec Vec Vec Vec Vec

●Typically 1e3 to
 1e6 elements
●Stored compressed
●In byte arrays
●Get/put is a few
 clock cycles
 including
 compression
●Compression is
 Good: more data
 per cache-miss

25

JVM 4 Heap

JVM 1 Heap

JVM 2 Heap

JVM 3 Heap

Distributed Data Taxonomy

A Chunk[]: Concurrent Vec Access

age sex zip ID car

●Access Row in a
 single thread
●Like a Java object

●Can read & write:
 Mutable Vectors
●Both are full Java
 speed
●Conflicting writes:
 use JMM rules

class Person { }

26

JVM 4 Heap

JVM 1 Heap

JVM 2 Heap

JVM 3 Heap

Distributed Data Taxonomy

Single Threaded Execution

Vec Vec Vec Vec Vec

●One CPU works a
 Chunk of rows
●Fork/Join work unit
●Big enough to cover
 control overheads
●Small enough to
 get fine-grained par

●Map/Reduce
●Code written in a
 simple single-
 threaded style

27

JVM 4 Heap

JVM 1 Heap

JVM 2 Heap

JVM 3 Heap

Distributed Data Taxonomy

Distributed Parallel Execution

Vec Vec Vec Vec Vec

●All CPUs grab
 Chunks in parallel
●F/J load balances

●Code moves to Data
●Map/Reduce & F/J
 handles all sync
●H2O handles all
 comm, data manage

28

Distributed Data Taxonomy

Frame – a collection of Vecs

 Vec – a collection of Chunks

 Chunk – a collection of 1e3 to 1e6 elems

 elem – a java double

Row i – i'th elements of all the Vecs in a Frame

29

Sparkling Water

● Bleeding edge: Spark & H2ORDDs

● Move data back & forth, model & munge

● Same process, same JVM

● H2O Data as a:

● Spark RDD or

● Scala Collection

● Code in:

● https://github.com/0xdata/h2o-dev

● https://github.com/0xdata/perrier

Frame.toRDD.runJob(...)

Frame.foreach{...}

30

Sparkling Water: Spark and H2O

● Convert RDDs <==> Frames

● In memory, simple fast call

● In process, no external tooling needed

● Distributed – data does not move*

● Eager, not Lazy

● Makes a data copy!

● H2O data is highly compressed

● Often 1/4 to 1/10th original size

*See fine print

31

Spark Partitions and H2O Chunks

Spark: Partition[User]

JVM Heap

These structures are limited to 1 JVM heap
There can be many in the heap, limited by only by memory

H2O: Chunk

*Only data correspondance is shown; a real data copy is required!

32

Spark RDDs and H2O Frames
JVM Heap #1 JVM Heap #2

JVM Heap #3 JVM Heap #4

Frame

RDD

H2O: Chunk

Partition

Vec

33

Sparkling Water

● Convert to H2O Frame

● Eager, executes RDDs immediately

● Makes a compressed H2O copy

● Convert to Spark RDD

● Lazy, defines a normal RDD

● When executed, acts as a checkpoint

val fr = toDataFrame(sparkCx,rdd)

val rdd = toRDD(sparkCx,fr)

34

Distributed Coding Taxonomy

● No Distribution Coding:

● Whole Algorithms, Whole Vector-Math

● REST + JSON: e.g. load data, GLM, get results

● R, Python, Web, bash/curl

● Simple Data-Parallel Coding:

● Map/Reduce-style: e.g. Any dense linear algebra

● Java/Scala foreach* style

● Complex Data-Parallel Coding

● K/V Store, Graph Algo's, e.g. PageRank

35

Summary: Write (parallel) Java

● Most simple Java “just works”

● Scala API is experimental, but will also "just work"

● Fast: parallel distributed reads, writes, appends

● Reads same speed as plain Java array loads

● Writes, appends: slightly slower (compression)

● Typically memory bandwidth limited

– (may be CPU limited in a few cases)

● Slower: conflicting writes (but follows strict JMM)

● Also supports transactional updates

36

Summary: Writing Analytics

● We're writing Big Data Distributed Analytics

● Deep Learning

● Generalized Linear Modeling (ADMM, GLMNET)

– Logistic Regression, Poisson, Gamma

● Random Forest, GBM, KMeans, PCA, ...

● Solidly working on 100G datasets

● Testing Tera Scale Now

● Paying customers (in production!)

● Come write your own (distributed) algorithm!!!

37

Q & A

0xdata.com

https://github.com/0xdata/h2o

https://github.com/0xdata/h2o-dev
https://github.com/0xdata/perrier

38

Cool Systems Stuff...

● … that I ran out of space for

● Reliable UDP, integrated w/RPC

● TCP is reliably UNReliable

● Already have a reliable UDP framework, so no prob

● Fork/Join Goodies:

● Priority Queues

● Distributed F/J

● Surviving fork bombs & lost threads

● K/V does JMM via hardware-like MESI protocol

39

Speed Concerns

● How fast is fast?

● Data is Big (by definition!) & must see it all

● Typically: less math than memory bandwidth

● So decompression happens while waiting for mem

● More (de)compression is better

● Currently 15 compression schemes

● Picked per-chunk, so can (does) vary across dataset

● All decompression schemes take 2-10 cycles max

● Time leftover for plenty of math

40

Speed Concerns

● Serialization:

● Rarely send Big Data around (too much of that! Must be

normally node-local access)

● Instead it's POJO's doing the math (Histograms, Gram

Matrix, sums & variances, etc)

● Bytecode weaver on class load

● Write fields via Unsafe into DirectByteBuffers

● 2-byte unique token defines type (and nested types)

● Compression on that too! (more CPU than network)

41

Serialization

● Write fields via Unsafe into DirectByteBuffers

● All from simple JIT'd code -

– Just the loads & stores, nothing else

● 2-byte token once per top-level RPC

– (more tokens if subclassed objects used)

● Streaming async NIO

● Multiple shared TCP & UDP channels

– Small stuff via UDP & big via TCP

● Full app-level retry & error recovery

– (can pull cable & re-insert & all will recover)

42

Map / Reduce

● Map: Once-per-chunk; typically 1000's per-node

● Using Fork/Join for fine-grained parallelism

● Reduce: reduce-early-often – after every 2 maps

● Deterministic, same Maps, same rows every time

● Until all the Maps & Reduces on a Node are done

● Then ship results over-the-wire

● And Reduce globally in a log-tree rollup

● Network latency is 2 log-tree traversals

43

Fork/Join Experience

● Really Good (except when it's not)

● Good Stuff: easy to write...

● (after a steep learning curve)

● Works! Fine to have many many small jobs, load

balances across CPUs, keeps 'em all busy, etc.

● Full-featured, flexible

● We've got 100's of uses of it scattered throughout

44

Fork / Join Experience

● Really Good (except when it's not)

● Blocking threads is hard on F/J

– (ManagedBlocker.block API is painful)

– Still get thread starvation sometimes

● "CountedCompleters" – CPS by any other name

– Painful to write explicit-CPS in Java

● No priority queues – a Must Have

● And no Java thread priorities

● So built up priority queues over F/J & JVM

45

Fork/Join Experience

● Default exception is silently dropped

● Usual symptom: all threads idle, but job not done

● Complete maintenance disaster – must catch & track &

log all exceptions

– (and even pass around cluster distributed)

● Forgotten “tryComplete()” not too hard to track

● Fork-Bomb – must cap all thread pools

● Which can lead to deadlock

● Which leads to using CPS-style occasionally

● Despite issues, I'd use it again

46

The Platform

NFS
HDFS

byte[]

extends Iced

extends DTask

AutoBuffer

RPC

extends DRemoteTask D/F/J

extends MRTask User code?

JVM 1

NFS
HDFS

byte[]

extends Iced

extends DTask

AutoBuffer

RPC

extends DRemoteTask D/F/J

extends MRTask User code?

JVM 2

K/V get/put

UDP / TCP

47

TCP Fails

● In <5mins, I can force a TCP fail on Linux

● "Fail": means Server opens+writes+closes

● NO ERRORS

● Client gets no data, no errors

● In my lab (no virtualization) or EC2

● Basically, H2O can mimic a DDOS attack

● And Linux will "cheat" on the TCP protocol

● And cancel valid, in-progress, TCP handshakes

● Verified w/wireshark

48

TCP Fails

● Any formal verification? (yes lots)

● Of recent Linux kernals?

● Ones with DDOS-defense built-in?

