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H2O is... 

● Pure Java, Open Source: 0xdata.com 

● https://github.com/0xdata/h2o/ 

● A Platform for doing Parallel Distributed Math 

● In-memory analytics: GLM, GBM, RF, Logistic Reg, 

Deep Learning, PCA, Kmeans... 

● Data munging & cleaning 

● Accessible via REST & JSON, browser, Python, 

R, Java, Scala 

● And now Spark 

https://github.com/0xdata/h2o/
https://github.com/0xdata/h2o/
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Platform for doing Big Data Work 

● “Anything” you want to do on Big 2-D Tables 

● Most any Java that reads or writes a single row 

– Plus read nearby rows, and/or computes a reduction 

● Speed: data volume / memory bandwidth 

● ~50G/sec / node, varies by hardware 

● Data compressed: 2x to 4x better than gzip 

● Data limited to: numbers & time & strings 

● Table width: <1K fast, <10K works, <100K slower 

● Table length: Limit of memory 
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What Can I Do With It? 
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Simple Data-Parallel Coding 

● Map/Reduce Per-Row: Stateless 

● Example from Linear Regression, Σ y2  

 

 

 

 

 

 

 

● Auto-parallel, auto-distributed 

● Fortran speed, Java Ease 

double sumY2 = new MRTask() { 

  double map( double d ) { return d*d; } 

  double reduce( double d1, double d2 ) { 

    return d1+d2; 

  } 

}.doAll( vecY ); 
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Simple Data-Parallel Coding 

● Scala version in development: 

 

 

 

 

MR { 

  def map(A:Double) = A*A 

  def reduce(B1, B2: Double) = B1+B2 

}.doAll( vecY ); 
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Simple Data-Parallel Coding 

● Map/Reduce Per-Row: Statefull 

● Linear Regression Pass1: Σ x, Σ y, Σ y2 

class LRPass1 extends MRTask { 

  double sumX, sumY, sumY2; // I Can Haz State? 

  void map( double X, double Y ) { 

    sumX += X;  sumY += Y;  sumY2 += Y*Y; 

  } 

  void reduce( LRPass1 that ) { 

    sumX  += that.sumX ; 

    sumY  += that.sumY ; 

    sumY2 += that.sumY2; 

  } 

} 
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MR { var X, Y, X2=0.0; var n=0L 

  def map(x,y:Double) = X=x; Y=y; X2=x*x; n=1 

  def reduce(@@: self) = 

    { X+=@@.X; Y+=@@.Y; X2+=@@.X2; n+=@@.n } 

}.doAll(vecX,vecY) 

 

Simple Data-Parallel Coding 

● Scala version in development: 
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Simple Data-Parallel Coding 

● Map/Reduce Per-Row: Batch Statefull 

class LRPass1 extends MRTask { 

  double sumX, sumY, sumY2; 

  void map( Chunk CX, Chunk CY ) {// Whole Chunks 

    for( int i=0; i<CX.len; i++ ){// Batch! 

      double X = CX.at(i), Y = CY.at(i); 

      sumX += X;  sumY += Y;  sumY2 += Y*Y; 

    } 

  } 

  void reduce( LRPass1 that ) { 

    sumX  += that.sumX ; 

    sumY  += that.sumY ; 

    sumY2 += that.sumY2; 

  } 

} 
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Other Simple Examples 

● Filter & Count (underage males): 

● (can pass in any number of Vecs or a Frame) 

 

 

 

 

 

 

 

● Scala syntax 

long sumY2 = new MRTask() { 

  long map( long age, long sex ) { 

    return (age<=17 && sex==MALE) ? 1 : 0; 

  } 

  long reduce( long d1, long d2 ) { 

    return d1+d2; 

  } 

}.doAll( vecAge, vecSex ); 

MR(0).map(_('age)<=17 && _('sex)==MALE ) 

     .reduce(add).doAll( frame ); 
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Other Simple Examples 

● Filter into new set (underage males): 

● Can write or append subset of rows 

– (append order is preserved) 

class Filter extends MRTask { 

  void map(Chunk CRisk, Chunk CAge, Chunk CSex){ 

    for( int i=0; i<CAge.len; i++ ) 

      if( CAge.at(i)<=17 && CSex.at(i)==MALE ) 

        CRisk.append(CAge.at(i)); // build a set 

  } 

}; 

Vec risk = new AppendableVec(); 

new Filter().doAll( risk, vecAge, vecSex ); 

...risk... // all the underage males 
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Other Simple Examples 

● Filter into new set (underage males): 
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Vec risk = new AppendableVec(); 

new Filter().doAll( risk, vecAge, vecSex ); 

...risk... // all the underage males 
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Other Simple Examples 

● Group-by: count of car-types by age 

class AgeHisto extends MRTask { 

  long carAges[][]; // count of cars by age 

  void map( Chunk CAge, Chunk CCar ) { 

    carAges = new long[numAges][numCars]; 

    for( int i=0; i<CAge.len; i++ ) 

      carAges[CAge.at(i)][CCar.at(i)]++; 

  } 

  void reduce( AgeHisto that ) { 

    for( int i=0; i<carAges.length; i++ ) 

      for( int j=0; i<carAges[j].length; j++ ) 

        carAges[i][j] += that.carAges[i][j]; 

  } 

} 
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class AgeHisto extends MRTask { 

  long carAges[][]; // count of cars by age 

  void map( Chunk CAge, Chunk CCar ) { 

    carAges = new long[numAges][numCars]; 

    for( int i=0; i<CAge.len; i++ ) 

      carAges[CAge.at(i)][CCar.at(i)]++; 

  } 

  void reduce( AgeHisto that ) { 

    for( int i=0; i<carAges.length; i++ ) 

      for( int j=0; i<carAges[j].length; j++ ) 

        carAges[i][j] += that.carAges[i][j]; 

  } 

} 

Other Simple Examples 

● Group-by: count of car-types by age 
Setting carAges in map() makes it an output field.   
Private per-map call, single-threaded write access. 

Must be rolled-up in the reduce call. 

Setting carAges in map makes it an output field.   
Private per-map call, single-threaded write access. 

Must be rolled-up in the reduce call. 
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Other Simple Examples 

● Uniques 

● Uses distributed hash set 

class Uniques extends MRTask { 

  DNonBlockingHashSet<Long> dnbhs = new ...; 

  void map( long id ) { dnbhs.add(id); } 

  void reduce( Uniques that ) { 

    dnbhs.putAll(that.dnbhs); 

  } 

}; 

long uniques = new Uniques(). 

  doAll( vecVistors ).dnbhs.size(); 
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Other Simple Examples 

● Uniques 

● Uses distributed hash set 

class Uniques extends MRTask { 

  DNonBlockingHashSet<Long> dnbhs = new ...; 

  void map( long id ) { dnbhs.add(id); } 

  void reduce( Uniques that ) { 

    dnbhs.putAll(that.dnbhs); 

  } 

}; 

long uniques = new Uniques(). 

  doAll( vecVistors ).dnbhs.size(); 

Setting dnbhs in <init> makes it an input field.   
Shared across all maps().  Often read-only. 

This one is written, so needs a reduce. 
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How Does It Work? 
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A Collection of Distributed Vectors 

// A Distributed Vector 

//   much more than 2billion elements 

class Vec { 

  long length(); // more than an int's worth 

 

  // fast random access 

  double at(long idx); // Get the idx'th elem 

  boolean isNA(long idx); 

 

  void set(long idx, double d); // writable 

  void append(double d); // variable sized 

} 
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Distributed Data Taxonomy 

A Single Vector 

Vec 
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Distributed Data Taxonomy 

A Very Large Single Vec 

Vec  
>> 2billion elements ●Java primitive 

●Usually double 
 

●Length is a long 

●>> 2^31 elements 
 
●Compressed 
●Often 2x to 4x 
●Random access 
 
●Linear access is 
  FORTRAN speed 
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JVM 4 Heap 
32Gig 

JVM 1 Heap 
32Gig 

JVM 2 Heap 
32Gig 

JVM 3 Heap 
32Gig 

Distributed Data Taxonomy 

A Single Distributed Vec 

Vec  
>> 2billion elements ●Java Heap 

●Data In-Heap 
●Not off heap 
●Split Across Heaps 
 
●GC management 
●Watch FullGC 
●Spill-to-disk 
●GC very cheap 
●Default GC 
 
●To-the-metal speed 
●Java ease 
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JVM 4 Heap 

JVM 1 Heap 

JVM 2 Heap 

JVM 3 Heap 

Distributed Data Taxonomy 

A Collection of Distributed Vecs 

Vec Vec Vec Vec Vec 

●Vecs aligned 
  in heaps 
●Optimized for 
  concurrent access 
●Random access 
  any row, any JVM 
 
●But faster if local... 
  more on that later 
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JVM 4 Heap 

JVM 1 Heap 

JVM 2 Heap 

JVM 3 Heap 

Distributed Data Taxonomy 

A Frame: Vec[] 

age sex zip ID car 

●Similar to R frame 
●Change Vecs freely 
●Add, remove Vecs 
●Describes a row of 
  user data 
●Struct-of-Arrays 
  (vs ary-of-structs) 
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JVM 4 Heap 

JVM 1 Heap 

JVM 2 Heap 

JVM 3 Heap 

Distributed Data Taxonomy 

A Chunk, Unit of Parallel Access 

Vec Vec Vec Vec Vec 

●Typically 1e3 to  
  1e6 elements 
●Stored compressed 
●In byte arrays 
●Get/put is a few 
  clock cycles  
  including  
  compression 
●Compression is  
 Good: more data  
 per cache-miss 
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JVM 4 Heap 

JVM 1 Heap 

JVM 2 Heap 

JVM 3 Heap 

Distributed Data Taxonomy 

A Chunk[]: Concurrent Vec Access 

age sex zip ID car 

●Access Row in a 
  single thread 
●Like a Java object 
 
●Can read & write: 
 Mutable Vectors 
●Both are full Java 
  speed 
●Conflicting writes: 
  use JMM rules 

class Person { } 
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JVM 4 Heap 

JVM 1 Heap 

JVM 2 Heap 

JVM 3 Heap 

Distributed Data Taxonomy 

Single Threaded Execution 

Vec Vec Vec Vec Vec 

●One CPU works a 
  Chunk of rows 
●Fork/Join work unit 
●Big enough to cover 
  control overheads 
●Small enough to 
  get fine-grained par 
 
●Map/Reduce 
●Code written in a 
  simple single- 
  threaded style 
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JVM 4 Heap 

JVM 1 Heap 

JVM 2 Heap 

JVM 3 Heap 

Distributed Data Taxonomy 

Distributed Parallel Execution 

Vec Vec Vec Vec Vec 

●All CPUs grab 
  Chunks in parallel 
●F/J load balances 
 
●Code moves to Data 
●Map/Reduce & F/J 
  handles all sync 
●H2O handles all 
  comm, data manage 
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Distributed Data Taxonomy 

Frame – a collection of Vecs 

  Vec – a collection of Chunks 

    Chunk – a collection of 1e3 to 1e6 elems 

      elem – a java double 

 

 

Row i – i'th elements of all the Vecs in a Frame 
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Sparkling Water 

● Bleeding edge: Spark & H2ORDDs 

● Move data back & forth, model & munge 

● Same process, same JVM 

● H2O Data as a: 

● Spark RDD or 

● Scala Collection 

● Code in: 

● https://github.com/0xdata/h2o-dev 

● https://github.com/0xdata/perrier 

Frame.toRDD.runJob(...) 

 

Frame.foreach{...} 
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Sparkling Water: Spark and H2O 

● Convert RDDs <==> Frames 

● In memory, simple fast call 

● In process, no external tooling needed 

● Distributed – data does not move* 

● Eager, not Lazy 

● Makes a data copy! 

● H2O data is highly compressed 

● Often 1/4 to 1/10th original size 

*See fine print 
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Spark Partitions and H2O Chunks 

Spark: Partition[User] 

JVM Heap 

These structures are limited to 1 JVM heap 
There can be many in the heap, limited by only by memory 

H2O: Chunk 

*Only data correspondance is shown; a real data copy is required! 
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Spark RDDs and H2O Frames 
JVM Heap #1 JVM Heap #2 

JVM Heap #3 JVM Heap #4 

Frame 

RDD 

H2O: Chunk 

Partition 

Vec 
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Sparkling Water 

● Convert to H2O Frame 

● Eager, executes RDDs immediately 

● Makes a compressed H2O copy 

 

 

● Convert to Spark RDD 

● Lazy, defines a normal RDD 

● When executed, acts as a checkpoint 

val fr = toDataFrame(sparkCx,rdd) 

val rdd = toRDD(sparkCx,fr) 
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Distributed Coding Taxonomy 

● No Distribution Coding: 

● Whole Algorithms, Whole Vector-Math 

● REST + JSON:  e.g. load data, GLM, get results 

● R, Python, Web, bash/curl 

● Simple Data-Parallel Coding: 

● Map/Reduce-style: e.g. Any dense linear algebra 

● Java/Scala foreach* style 

● Complex Data-Parallel Coding 

● K/V Store, Graph Algo's, e.g. PageRank 
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Summary: Write (parallel) Java 

● Most simple Java “just works” 

● Scala API is experimental, but will also "just work" 

● Fast: parallel distributed reads, writes, appends 

● Reads same speed as plain Java array loads 

● Writes, appends: slightly slower (compression) 

● Typically memory bandwidth limited 

– (may be CPU limited in a few cases) 

● Slower: conflicting writes (but follows strict JMM) 

● Also supports transactional updates 
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Summary: Writing Analytics 

● We're writing Big Data Distributed Analytics 

● Deep Learning 

● Generalized Linear Modeling (ADMM, GLMNET) 

– Logistic Regression, Poisson, Gamma 

● Random Forest, GBM, KMeans, PCA, ... 

● Solidly working on 100G datasets 

● Testing Tera Scale Now 

● Paying customers (in production!) 

● Come write your own (distributed) algorithm!!! 
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Q & A 

0xdata.com 

https://github.com/0xdata/h2o 

https://github.com/0xdata/h2o-dev 
https://github.com/0xdata/perrier 
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Cool Systems Stuff... 

● … that I ran out of space for 

● Reliable UDP, integrated w/RPC 

● TCP is reliably UNReliable 

● Already have a reliable UDP framework, so no prob 

● Fork/Join Goodies: 

● Priority Queues 

● Distributed F/J 

● Surviving fork bombs & lost threads 

● K/V does JMM via hardware-like MESI protocol 
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Speed Concerns 

● How fast is fast? 

● Data is Big (by definition!) & must see it all 

● Typically: less math than memory bandwidth 

● So decompression happens while waiting for mem 

● More (de)compression is better 

● Currently 15 compression schemes 

● Picked per-chunk, so can (does) vary across dataset 

● All decompression schemes take 2-10 cycles max 

● Time leftover for plenty of math 
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Speed Concerns 

● Serialization: 

● Rarely send Big Data around (too much of that! Must be 

normally node-local access) 

● Instead it's POJO's doing the math (Histograms, Gram 

Matrix, sums & variances, etc) 

● Bytecode weaver on class load 

● Write fields via Unsafe into DirectByteBuffers 

● 2-byte unique token defines type (and nested types) 

● Compression on that too!  (more CPU than network) 
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Serialization 

● Write fields via Unsafe into DirectByteBuffers 

● All from simple JIT'd code - 

– Just the loads & stores, nothing else 

● 2-byte token once per top-level RPC 

– (more tokens if subclassed objects used) 

● Streaming async NIO 

● Multiple shared TCP & UDP channels 

– Small stuff via UDP & big via TCP 

● Full app-level retry & error recovery 

– (can pull cable & re-insert & all will recover) 
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Map / Reduce 

● Map: Once-per-chunk; typically 1000's per-node 

● Using Fork/Join for fine-grained parallelism 

● Reduce: reduce-early-often – after every 2 maps 

● Deterministic, same Maps, same rows every time 

● Until all the Maps & Reduces on a Node are done 

● Then ship results over-the-wire 

● And Reduce globally in a log-tree rollup 

● Network latency is 2 log-tree traversals 
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Fork/Join Experience 

● Really Good (except when it's not) 

● Good Stuff: easy to write... 

● (after a steep learning curve) 

● Works!  Fine to have many many small jobs, load 

balances across CPUs, keeps 'em all busy, etc. 

● Full-featured, flexible 

● We've got 100's of uses of it scattered throughout 
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Fork / Join Experience 

● Really Good (except when it's not) 

● Blocking threads is hard on F/J 

– (ManagedBlocker.block API is painful) 

– Still get thread starvation sometimes 

● "CountedCompleters" – CPS by any other name 

– Painful to write explicit-CPS in Java 

● No priority queues – a Must Have 

● And no Java thread priorities 

● So built up priority queues over F/J & JVM 
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Fork/Join Experience 

● Default exception is silently dropped 

● Usual symptom: all threads idle, but job not done 

● Complete maintenance disaster – must catch & track & 

log all exceptions 

– (and even pass around cluster distributed) 

● Forgotten “tryComplete()” not too hard to track 

● Fork-Bomb – must cap all thread pools 

● Which can lead to deadlock 

● Which leads to using CPS-style occasionally 

● Despite issues, I'd use it again 
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The Platform 

NFS 
HDFS 

byte[] 

extends Iced 

extends DTask 

AutoBuffer 

RPC 

extends DRemoteTask D/F/J 

extends MRTask User code? 

JVM 1 

NFS 
HDFS 

byte[] 

extends Iced 

extends DTask 

AutoBuffer 

RPC 

extends DRemoteTask D/F/J 

extends MRTask User code? 

JVM 2 

K/V get/put 

UDP / TCP 
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TCP Fails 

● In <5mins, I can force a TCP fail on Linux 

● "Fail": means Server opens+writes+closes 

● NO ERRORS 

● Client gets no data, no errors 

● In my lab (no virtualization) or EC2 

● Basically, H2O can mimic a DDOS attack 

● And Linux will "cheat" on the TCP protocol 

● And cancel valid, in-progress, TCP handshakes 

● Verified w/wireshark 
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TCP Fails 

● Any formal verification?  (yes lots) 

● Of recent Linux kernals?   

● Ones with DDOS-defense built-in? 


