
CHALLENGES OF LARGE

WEB APPS

Graham Hinchly

Engineering Manager, FT Labs!

app.ft.com!

•  Only mobile optimised
experience for FT
content"

•  Lots and lots of JS &
CSS"

•  Works offline"
•  Momentum scrolling &

swiping"

What Am I Going to Talk About?"
•  Web app architecture (mostly JS)"
•  UI Performance "
•  Offline"

Architecture"

What are we aiming for?"
•  Safe to extend/modify"
– Clear principles"

•  Reusability"
–  Independent of context"

•  Happy team ☺"

Modular Javascript"
•  We want"
– Encapsulation"
– Dependency management"
– Reusability on client and server"

Browserify"

Looks Great, but…"
•  Difficult to apply to legacy code, beware

circular dependencies"
– Prefer refactoring over workarounds"

•  Can be slow with large codebase - needs
to be re-run on each change"

Dependency Management"
•  npm"
– Great for pure Javascript"
– Ensuring repeatability"

•  Tags and/or semver can be unreliable"
•  Want to pin exact commit, so use npm-shrinkwrap"

– Reliance on registry as part of build/
deployment (inc. for CI) can be problematic"
•  We use a private lazy cache"

Breaking Up a Monolith"
•  We can extract self contained modules out

of code base by using npm + browserify"
– And start to write JS unit tests"

•  Can then just npm install … --save!
•  And require(‘…’) in our code"

Beyond One App…"
•  But what about sharing entire components

between multiple sites/apps?"
•  Components require mix of HTML, CSS &

JS"
– Seems to currently be best served by Bower!

•  Origami: open initiative at the FT to
promote shared components"

origami.ft.com"

The Future…?"
•  What about sharing with the entire web?"
– Web components"

•  Maintain semantic, declarative HTML"
•  Import components from other authors"
•  CSS & DOM encapsulation via ShadowDOM"
•  Latest (updated 9th Sept)

css-tricks.com/modular-future-web-components/ "

•  How can we pull in component at runtime
but still store it for offline use?"

Performance"

What are we aiming for?"
•  Smoothness"
•  Responsiveness"
•  Crash-free"

Why Is This hard?"
•  Layout was designed for documents"
– This is great as we didn’t need to worry about

positioning everything exactly"
– But this means small changes can affect lots

of things"
– Browser needs to do lots of recalculation"

•  Javascript is single threaded – blocks UI"
•  “Automatic” memory management"

Achieving Smoothness"
•  ‘Jank free’"
– Avoid dropped frames, ideally achieving 60

frames per second [1]"
•  In our experience, bottleneck is hardly

ever pure Javascript"
•  Usually layout/paint (we’ll come on to what

this in a minute…)"

" [1] http://www.smashingmagazine.com/2013/06/10/pinterest-paint-performance-case-study/"

Chrome Timeline"

What Does This Show Us?"

From:	
 h(p://www.html5rocks.com/en/tutorials/speed/high-­‐performance-­‐anima<ons/	

Raising Signal:Noise"

•  Use Chrome in Incognito mode to protect
from extensions"

•  Consider blocking network requests"
•  Beware mouse movement"
"

"

Swiping on app.ft.com"
github.com/ftlabs/ftscroller"

Avoid Layout & Paint"

•  Use hardware acceleration (GPU)"
– translateZ()/translate3d() hack [1]"

– Transforms (position, scale, rotation) and
opacity are cheap if element is on it’s own
layer"

– Not a silver bullet - layers take up memory"
•  Future is declarative: will-change [2][3] "
"

"
"

[1]	
 h(p://aerotwist.com/blog/on-­‐translate3d-­‐and-­‐layer-­‐crea<on-­‐hacks/	

[2]	
 h(p://aerotwist.com/blog/bye-­‐bye-­‐layer-­‐hacks/	

[3]	
 h(ps://dev.opera.com/ar<cles/css-­‐will-­‐change-­‐property/	

Minimising Relayout"
•  Requiring a geometric value from the

DOM forces it to layout synchronously if
anything has invalidated layout"

•  Sounds kind of confusing…. Let’s see
some code…."

Layout ‘Thrashing’ [1]"

[1] http://wilsonpage.co.uk/preventing-layout-thrashing/"

What We Ideally Want…"

github.com/wilsonpage/fastdom"

Disclaimer"
•  This stuff is constantly changing – make

sure you test your individual use case"
•  Keep up to date:"
– html5rocks.com/en/features/performance"
–  jankfree.org/"
– Paul Lewis: aerotwist.com/"

"
"

Offline"

The Toolbox"
•  Application Cache (AppCache)"
•  LocalStorage"
•  IndexedDB"
•  (soon) ServiceWorker "
"

"

AppCache"
•  Well intentioned, but flawed:"
– Only updates if manifest file itself changed"
– Single change = complete redownload"
– Any failures = reversion to previous cached files"
– More:

alistapart.com/article/application-cache-is-a-
douchebag"

•  However, it is usable"
– We use it for bare minimum – bootstrap code,

fonts, splash screen images"

LocalStorage"
•  Simple API"
•  Fast"
"

How Fast is localStorage?"

http://www.mobify.com/blog/smartphone-localstorage-outperforms-browser-cache/"

LocalStorage"
•  But:"
– Limited storage"
– Synchronous"
– File I/O for persistence means it can have

variable performance"
– Odd behaviour in Safari private browsing"
– We use a lightweight async wrapper by Matt

Andrews
github.com/matthew-andrews/superstore"

"

IndexedDB"
•  Indexable key value object store"
– We use this for articles and images"

•  Not supported everywhere - use polyfill [1]
to support (long deprecated) WebSQL "

•  Managing versions and migrations can be
awkward"

•  Documentation is variable"

[1] http://nparashuram.com/IndexedDBShim/ or
https://github.com/mozilla/localForage "

How Much Can I Store?"
•  Depends on browser and permissions

granted by user, see
html5rocks.com/en/tutorials/offline/quota-
research"

•  Getting more out of allowable storage by
using UTF-8 instead of UTF-16:
labs.ft.com/2012/06/text-re-encoding-for-
optimising-storage-capacity-in-the-browser/""

•  Remember: need to base64 encode images
to store them"

Debugging / Inspecting"
•  DevTools"
"

Debugging / Inspecting"
•  Going a bit deeper:"
– chrome://appcache-internals"
–  (confusingly) chrome://settings/cookies"

labs.ft.com/2012/08/basic-offline-html5-web-app/"

ServiceWorker"
•  Replacement for AppCache, sits in the middle of

browser and network"
•  Lots of good things:"

–  Low level, granular control over browser network stack"
–  Extensible"
–  Introduces “Cache API” for storage"
–  Can work with resources from any origin (opaque

response)"
–  Async"

•  But:"
–  No access to LocalStorage"
–  HTTPS only"

Extending ServiceWorker"
•  The future?"
– Combine w/ background sync"
–  Integrate with notifications and push API"

•  More:"
– How to use it today (published 24th Sept):

jakearchibald.com/2014/using-serviceworker-
today/"

– Google IO Talk:
youtube.com/ watch?v=_yy0CDLnhMA"

– Browser support:
jakearchibald.github.io/isserviceworkerready/"

Thanks"

 Get in touch ☺ - @grahamhinchly /
graham.hinchly@ft.com"

 Check out our open source - github.com/ftlabs"
 Come and work for us! - labs.ft.com/jobs"

