Swift: New Paradigms for
10S Development

Marc Prud'hommeaux

Indie Software Developer / marc@impathic.com

GOTO Conference

Copenhagen, September 25, 2014

1. Swift
2. FP

3. Tweet
4. HOF
5. Bork

6. Questions?

Overview

Flash-Poll

Who Programs?

Who Programs in Objective-C?
Who Programs in Java/C#/C++?
Who Programs Functionally?

Who Programs in Swift?

@interface
@property (nonatomic, strong) NSString *username;
@property (nonatomic, strong) NSString *body;

- (instancetype)initWithUsername: (NSString *)username body:(NSString *)body;
@end

@implementation

- (instancetype)initWithUsername: (NSString *)username
body: (NSString *)body {
if (self = [super init]) { self = username; self = body; }
return self;

b
@end

@interface

- (void)tweet:(Tweet *)tweet;

+ (TweeterService *)sharedService;
@end

TweeterService *service = [TweeterService sharedService];
Tweet *tweet = [[Tweet alloc] initWithUsername:

body: 1;
[service tweet:tweet];

struct {
var username:. String
Let body: String

J
class {

func tweet(tweet: Tweet) { ... }

class func sharedService() -> TweeterService { ... }
)

Let service = TweeterService.sharedService()

Let message =

var tweet = Tweet(username: , body: message)
service.tweet(tweet)

Swift & ODbjC: The Similarities

Classes

Methods

Protocols (interfaces)

Extensions (categories)

Functions (methods)

Semi-automatic memory management (ARC)

Closures (blocks)

Swift: Small Additions

Swift Structures
Namespaces

Swift Constants
Operator Overloading

ODbjC Interop

Swift: Big Additions

Swift Enumerations

Optionals (hon-nullable properties)
Generics

Type Inference

Immutability Support

Tuples

First-class Functions

10

Swift: Big Additions

Swift Enumerations

Optionals (hon-nullable properties)
Generics

Type Inference

Immutability Support

Tuples

First-class Functions

11

struct {
var username:. String
Let body: String

J
class {

func tweet(tweet: Tweet) { ... }

class func sharedService() -> TweeterService { ... }
)

Let service = TweeterService.sharedService()

Let message =

var tweet = Tweet(username: , body: message)
service.tweet(tweet)

12

Bug: No completion notification

class {
func tweet(tweet: Tweet) { ... }

J

13

Bug: No completion notification

class {
func tweet(tweet: Tweet) -> Void { ... }

J

14

Change the return type

class {
func tweet(tweet: Tweet) -> Bool { ... }

J

15

Buzzzz! Wrong!

class {
func tweet(tweet: Tweet) -> Bool { ... }

J

16

The Delegate Pattern (ObjC)

@protocol
- (void)tweet:(Tweet *)tweet completed:(BOOL)successful;
@end

@interface
@property (weak) 1d<TweetDelegate> serviceDelegate;

- (void)tweet:(Tweet *)tweet;
+ (TweeterService *)sharedService;

@end

TweeterService *service = [TweeterService sharedService];

id<TweetDelegate> delegate = [[MyTweetDelegate alloc] init];

service = delegate;

[service tweet:tweet];

17

The Delegate Pattern (Swift)

protocol {
func tweetCompleted(tweet: Tweet, success: Bool)
by
class {
var delegate: TweeterDelegate?
func tweet(tweet: Tweet) { ... }
class func sharedService() -> TweeterService { ... }
by

Let service = TweeterService.sharedService()
Let serviceDelegate = MyTweeterDeleate()
service.delegate = serviceDelegate

service.tweet(tweet)

18

“Functional Programming”

=> First-Class Functions

Functional Programming is a
Style

Swift has many features that enable programming in
the Functional Style

A Functional Language
compels Functional
Programming

Swift is not really a Functional Language

Swift Closures

class {
func tweet(tweet: Tweet, done:

]

(Bool)->Void)

23

The Function as a Data Type

class {
func tweet(tweet: Tweet, done: (Bool)->Void)

J

var donefun: (Bool)->Void

donefun = { success 1in
if success {
printin()
} else {
printin()

3
]

service.tweet(tweet, done: donefun)

yZ

Defining the Function Inline

class {
func tweet(tweet: Tweet, done: (success: Bool)->Void)

b

service.tweet(tweet, done: { (success: Bool) in
if success {
printin()
} else {
printin()

b
1)

25

And More Succinctly...

class {
func tweet(tweet: Tweet, done: (success: Bool)->Void)

b

service.tweet(tweet) {
println($0 ? ;)
by

26

“Higher Order Function”

MAP
FILTER

REDUCE

ooooo

MAP

Transform some Stuff into other Stuff

FILTER

Turn some Stuff into fewer Stuff

REDUCE

Turn some Stuff into a single Thing

A Danish Tweet?

Let danishTweet = Tweet(username: :
body:)

service.tweet(danishTweet, done: { (success) -> Void in
if success {
printin()
} else {
printin()

b
1)

2 William Shakespeare, Hamlet, Act Il, Scene 2 (paraphrased)

30

Llet adviceTweet = Tweet(username: "Folonius',

body:

+ + + + + 4+ + + 4+ ++ 4+ ++++++++++ A+ ++ 4

"Yet here, Laertes? Aboard, aboard, for shame! "
"The wind sits in the shoulder of your sail "

"And you are stayed for. There, my blessing with thee.

"And these few precepts in thy memory "

"Look thou character. Give thy thoughts no tongue, "
"Nor any unproportioned thought his act. "

"Be thou familiar but by no means vulgar. "

"Those friends thou hast, and their adoption tried, "
"Grapple them unto thy soul with hoops of steel, "
"But do not dull thy palm with entertainment "

"Of each new-hatched, unfledged comrade. Beware "
"Of entrance to a quarrel, but being in, "

"Bear 't that th' opposed may beware of thee. "
"Give every man thy ear but few thy voice. "

"Take each man’s censure but reserve thy judgment. "
"Costly thy habit as thy purse can buy, "

"But not expressed in fancy—-rich, not gaudy, "

"For the apparel oft proclaims the man, "

"And they in France of the best rank and station "
"Are of a most select and generous chief in that. "
"Neither a borrower nor a lender be, "

"For loan oft loses both itself and friend, "

"And borrowing dulls the edge of husbandry. "

"This above all: to thine own self be true, "

"And it must follow, as the night the day, "

"Thou canst not then be false to any man. "
"Farewell. My blessing season this in thee.'")

31

Business Plan:
1. Localized Tweet Compression
2.7
3. Profit!

33

The Problem Domain

Let charCount = countElements(tweet.body)

== 1,18/ characters

countElements() is a global function in Swift

34

Translating the Tweet

The Swedish Chef

Llet words:

[String]

Let words =

Split

= split(tweet.body, { (c: Character) in c ==

or just:

split(tweet.body, { $0 ==

1)

1)

40

Words, words, words

words = ["Yet", "here", "Laertes?",
"Aboard", "aboard", "for", "shame!",
"The", "wind", "sits", "in", "the'",
"shoulder", "of", "your", "sail',
"And", "you", "are'", "stayed", "for",
"There", "my", "blessing", "with",
"thee", "And", "these", "few'",
"precepts", "in", "thy", "memory",
"Look", "thou", "character", "Give",
"thy", "thoughts", "no", "tongue",
"Nor", "any'", "unproportioned",

41

Filter

Let bigWords = words.filter({ (word: String) in countElements(word) > /7 })

More Compactly:

let bigWords = words.filter({ countElements($0) > 7 })

42

\YETe

Let borks: [String] = bigWords.map({ (word: String) in

More Compactly:

Let borks = bigWords.map({ word in

1)

1)

43

Reduce

Let translation: String = borks.reduce("",
combine: { (wordl: String, wordZ: String) -> String in
return wordl + + word2

1)

More Compactly:

let translation = borks.reduce("", combine: { $0 + + $1)

44

Function Composition

Llet translation = split(tweet.body, { (c: Character) in c ==
filter({ (word: String) in countElements(word) > 7 })

.map({ word in)
.reduce("", combine: { $0 + + $1)

Let translatedTweet = Tweet(username: tweet.username,
body: translation)

countElements(translation) // == 125!

1)

45

Bark

Bark Bark
Bark Bagrk Bgrk

Bark Bark Bark Bark Bark

BB

So What?

We're not doing anything here we couldn't do in
another other modern language

47

// split the tweet into words
NSMutableArray *words = [NSMutableArray array];
NSMutableString *currentWord = [NSMutableString string];

for (int 1 = 0, ii = tweet ; 1< ii; i++) {
unichar currentChar = [tweet characterAtIndex:1i];
if (currentChar ==) {

[words addObject:currentWord];
currentWord = [NSMutableString string];

} else {
[currentWord appendFormat: , currentChar];
3
3
// filter out the shorter words
for (int j = words -1; j >=0; j--) {
NSString *currentWord = words[j];
if (currentWord < 8) {
[words removeObjectAtIndex:j];
3
3
// map each element of the words array to Berk
for (int k = 0, kk = words ; k < kk; k++) {
words[k] = ;
3

// reduce the words back into a new tweet

NSMutableString *translatedTweet = [NSMutableString string];

for (int L = 0, Ll = words ; L < 1L; U++) {
[translatedTweet appendString:words[l]];

by

48

// split the tweet into words

NSMutableArray *words = [[tweet componentsSeparatedByString:

mutableCopy];

// filter out the shorter words

[words filterUsingPredicate:[NSPredicate predicateWithBlock:

ABOOL(1id evaluatedObject, NSDictionary *bindings) {
return [evaluatedObject length] > 7/;

111

// map each element of the words array to Berk

for (int k = 0, kk = words ; k < kk; k++) {
words[k] = ;

by

// reduce the words back into a new tweet

NSString *translatedIweet = [words componentsJoinedByString:

49

Let translation = split(tweet.body, { (char: Character) in char ==
filter({ (word: String) in countElements(word) > 7 3})
.map({ word 1in 1)
.reduce("", combine: { $0 + + $1 1)

1)

50

Write Less Code

Write Less Code

=== >

(less is more)

FP Checklist
Goal: Reduce Complexity

1. Stop branching (use closures)
2. Stop looping (use closures)

3. Reduce state (use immutability)

54

Swift's Dark Underbelly

1. It's new, and somewhat buggy
2. Cumbersome bridging

3. No more dynamic dispatch

4. Duck-typing is no longer fun

5. No error-handling

55

Thank You!

Please evaluate this talk with the
GOTO Mobile App

Marc Prud'hommeaux / marc@impathic.com

but you can't follow me on Twitter

