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1. Swift
2. FP

3. Tweet
4. HOF
5. Bork

6. Questions?

Overview



Flash-Poll

Who Programs?

Who Programs in Objective-C?
Who Programs in Java/C#/C++?
Who Programs Functionally?

Who Programs in Swift?






@interface
@property (nonatomic, strong) NSString *username;
@property (nonatomic, strong) NSString *body;

- (instancetype)initWithUsername: (NSString *)username body:(NSString *)body;
@end

@implementation

- (instancetype)initWithUsername: (NSString *)username
body: (NSString *)body {
if (self = [super init]) { self = username; self = body; }
return self;

b
@end

@interface

- (void)tweet:(Tweet *)tweet;

+ (TweeterService *)sharedService;
@end

TweeterService *service = [TweeterService sharedService];
Tweet *tweet = [[Tweet alloc] initWithUsername:

body: 1;
[service tweet:tweet];






struct {
var username:. String
Let body: String

J
class {

func tweet(tweet: Tweet) { ... }

class func sharedService() -> TweeterService { ... }
)

Let service = TweeterService.sharedService()

Let message =

var tweet = Tweet(username: , body: message)
service.tweet(tweet)



Swift & ODbjC: The Similarities

Classes

Methods

Protocols (interfaces)

Extensions (categories)

Functions (methods)

Semi-automatic memory management (ARC)

Closures (blocks)



Swift: Small Additions

Swift Structures
Namespaces

Swift Constants
Operator Overloading

ODbjC Interop



Swift: Big Additions

Swift Enumerations

Optionals (hon-nullable properties)
Generics

Type Inference

Immutability Support

Tuples

First-class Functions
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struct {
var username:. String
Let body: String

J
class {

func tweet(tweet: Tweet) { ... }

class func sharedService() -> TweeterService { ... }
)

Let service = TweeterService.sharedService()

Let message =

var tweet = Tweet(username: , body: message)
service.tweet(tweet)
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Bug: No completion notification

class {
func tweet(tweet: Tweet) { ... }

J
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Bug: No completion notification

class {
func tweet(tweet: Tweet) -> Void { ... }

J
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Change the return type

class {
func tweet(tweet: Tweet) -> Bool { ... }

J
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Buzzzz! Wrong!

class {
func tweet(tweet: Tweet) -> Bool { ... }

J
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The Delegate Pattern (ObjC)

@protocol
- (void)tweet:(Tweet *)tweet completed:(BOOL)successful;
@end

@interface
@property (weak) 1d<TweetDelegate> serviceDelegate;

- (void)tweet:(Tweet *)tweet;
+ (TweeterService *)sharedService;

@end

TweeterService *service = [TweeterService sharedService];

id<TweetDelegate> delegate = [[MyTweetDelegate alloc] init];

service = delegate;

[service tweet:tweet];
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The Delegate Pattern (Swift)

protocol {
func tweetCompleted(tweet: Tweet, success: Bool)
by
class {
var delegate: TweeterDelegate?
func tweet(tweet: Tweet) { ... }
class func sharedService() -> TweeterService { ... }
by

Let service = TweeterService.sharedService()
Let serviceDelegate = MyTweeterDeleate()
service.delegate = serviceDelegate

service.tweet(tweet)
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“Functional Programming”



=> First-Class Functions



Functional Programming is a
Style

Swift has many features that enable programming in
the Functional Style

A Functional Language
compels Functional
Programming

Swift is not really a Functional Language



Swift Closures

class {
func tweet(tweet: Tweet, done:

]

(Bool)->Void)
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The Function as a Data Type

class {
func tweet(tweet: Tweet, done: (Bool)->Void)

J

var donefun: (Bool)->Void

donefun = { success 1in
if success {
printin( )
} else {
printin( )

3
]

service.tweet(tweet, done: donefun)

yZ



Defining the Function Inline

class {
func tweet(tweet: Tweet, done: (success: Bool)->Void)

b

service.tweet(tweet, done: { (success: Bool) in
if success {
printin( )
} else {
printin( )

b
1)
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And More Succinctly...

class {
func tweet(tweet: Tweet, done: (success: Bool)->Void)

b

service.tweet(tweet) {
println($0 ? ; )
by
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“Higher Order Function”



MAP
FILTER

REDUCE

ooooo




MAP

Transform some Stuff into other Stuff

FILTER

Turn some Stuff into fewer Stuff

REDUCE

Turn some Stuff into a single Thing



A Danish Tweet?

Let danishTweet = Tweet(username: :
body: )

service.tweet(danishTweet, done: { (success) -> Void in
if success {
printin( )
} else {
printin( )

b
1)

2 William Shakespeare, Hamlet, Act Il, Scene 2 (paraphrased)
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Llet adviceTweet = Tweet(username: "Folonius',

body:

+ + + + + 4+ + + 4+ ++ 4+ ++++++++++ A+ ++ 4

"Yet here, Laertes? Aboard, aboard, for shame! "
"The wind sits in the shoulder of your sail "

"And you are stayed for. There, my blessing with thee.

"And these few precepts in thy memory "

"Look thou character. Give thy thoughts no tongue, "
"Nor any unproportioned thought his act. "

"Be thou familiar but by no means vulgar. "

"Those friends thou hast, and their adoption tried, "
"Grapple them unto thy soul with hoops of steel, "
"But do not dull thy palm with entertainment "

"Of each new-hatched, unfledged comrade. Beware "
"Of entrance to a quarrel, but being in, "

"Bear 't that th' opposed may beware of thee. "
"Give every man thy ear but few thy voice. "

"Take each man’s censure but reserve thy judgment. "
"Costly thy habit as thy purse can buy, "

"But not expressed in fancy—-rich, not gaudy, "

"For the apparel oft proclaims the man, "

"And they in France of the best rank and station "
"Are of a most select and generous chief in that. "
"Neither a borrower nor a lender be, "

"For loan oft loses both itself and friend, "

"And borrowing dulls the edge of husbandry. "

"This above all: to thine own self be true, "

"And it must follow, as the night the day, "

"Thou canst not then be false to any man. "
"Farewell. My blessing season this in thee.'")
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Business Plan:
1. Localized Tweet Compression
2.7
3. Profit!
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The Problem Domain

Let charCount = countElements(tweet.body)

== 1,18/ characters

countElements() is a global function in Swift
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Translating the Tweet



The Swedish Chef













Llet words:

[String]

Let words =

Split

= split(tweet.body, { (c: Character) in c ==

or just:

split(tweet.body, { $0 ==

1)

1)
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Words, words, words

words = ["Yet", "here", "Laertes?",
"Aboard", "aboard", "for", "shame!",
"The", "wind", "sits", "in", "the'",
"shoulder", "of", "your", "sail',
"And", "you", "are'", "stayed", "for",
"There", "my", "blessing", "with",
"thee", "And", "these", "few'",
"precepts", "in", "thy", "memory",
"Look", "thou", "character", "Give",
"thy", "thoughts", "no", "tongue",
"Nor", "any'", "unproportioned",
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Filter

Let bigWords = words.filter({ (word: String) in countElements(word) > /7 })

More Compactly:

let bigWords = words.filter({ countElements($0) > 7 })
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\YETe

Let borks: [String] = bigWords.map({ (word: String) in

More Compactly:

Let borks = bigWords.map({ word in

1)

1)
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Reduce

Let translation: String = borks.reduce("",
combine: { (wordl: String, wordZ: String) -> String in
return wordl + + word2

1)

More Compactly:

let translation = borks.reduce("", combine: { $0 + + $1 )
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Function Composition

Llet translation = split(tweet.body, { (c: Character) in c ==
filter({ (word: String) in countElements(word) > 7 })

.map({ word in )
.reduce("", combine: { $0 + + $1 )

Let translatedTweet = Tweet(username: tweet.username,
body: translation)

countElements(translation) // == 125!

1)
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Bark

Bark Bark
Bark Bagrk Bgrk

Bark Bark Bark Bark Bark

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB




So What?

We're not doing anything here we couldn't do in
another other modern language
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// split the tweet into words
NSMutableArray *words = [NSMutableArray array];
NSMutableString *currentWord = [NSMutableString string];

for (int 1 = 0, ii = tweet ; 1< ii; i++) {
unichar currentChar = [tweet characterAtIndex:1i];
if (currentChar == ) {

[words addObject:currentWord];
currentWord = [NSMutableString string];

} else {
[currentWord appendFormat: , currentChar];
3
3
// filter out the shorter words
for (int j = words -1; j >=0; j--) {
NSString *currentWord = words[j];
if (currentWord < 8) {
[words removeObjectAtIndex:j];
3
3
// map each element of the words array to Berk
for (int k = 0, kk = words ; k < kk; k++) {
words[k] = ;
3

// reduce the words back into a new tweet

NSMutableString *translatedTweet = [NSMutableString string];

for (int L = 0, Ll = words ; L < 1L; U++) {
[translatedTweet appendString:words[l]];

by
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// split the tweet into words

NSMutableArray *words = [[tweet componentsSeparatedByString:

mutableCopy];

// filter out the shorter words

[words filterUsingPredicate:[NSPredicate predicateWithBlock:

ABOOL(1id evaluatedObject, NSDictionary *bindings) {
return [evaluatedObject length] > 7/;

111

// map each element of the words array to Berk

for (int k = 0, kk = words ; k < kk; k++) {
words[k] = ;

by

// reduce the words back into a new tweet

NSString *translatedIweet = [words componentsJoinedByString:
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Let translation = split(tweet.body, { (char: Character) in char ==
filter({ (word: String) in countElements(word) > 7 3})
.map({ word 1in 1)
.reduce("", combine: { $0 + + $1 1)

1)
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Write Less Code



Write Less Code

=== >

(less is more)



FP Checklist
Goal: Reduce Complexity

1. Stop branching (use closures)
2. Stop looping (use closures)

3. Reduce state (use immutability)
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Swift's Dark Underbelly

1. It's new, and somewhat buggy
2. Cumbersome bridging

3. No more dynamic dispatch

4. Duck-typing is no longer fun

5. No error-handling
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Thank You!

Please evaluate this talk with the
GOTO Mobile App

Marc Prud'hommeaux / marc@impathic.com

but you can't follow me on Twitter



