
Responding in a timely manner

Martin Thompson - @mjpt777

Hard Real-time

Soft Real-time

Squidgy Real-time

The Unaware

1. How to Test and Measure

2. A little bit of Theory

3. A little bit of Practice

4. Common Pitfalls

5. Useful Algorithms and Techniques

Test & Measure

System Under Test

Distributed Load

Generation Agents

System Under Test

Distributed Load

Generation Agents

System Under Test

Distributed Load

Generation Agents

System Under Test

Distributed Load

Generation Agents

System Under Test

Observer

Pro Tip:
Setup a continuous

performance testing
environment

Pro Tip: Record Everything

Latency Histograms

Latency Histograms

Mode

Latency Histograms

Mode
Median

Latency Histograms

Mode
Median

Mean

System: 1000 TPS, mean RT 50µs

System: 1000 TPS, mean RT 50µs

What is the mean if you add in a

25ms GC pause per second?

System: 1000 TPS, mean RT 50µs

What is the mean if you add in a

25ms GC pause per second?

~300µs

Forget averages,

it’s all about percentiles

Source: Gil Tene (Azul Systems)

Coordinated Omission

Pro Tip: Don’t deceive yourself

Theory

Queuing Theory

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
e

sp
o

n
se

 T
im

e

Utilisation

Queuing Theory

Kendall Notation

M/D/1

Queuing Theory

r = s(2 – ρ) / 2(1 – ρ)

r = mean response time

s = service time

ρ = utilisation

Queuing Theory

r = s(2 – ρ) / 2(1 – ρ)

r = mean response time

s = service time

ρ = utilisation

Note: ρ = λ * (1 / s)

Queuing Theory

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
e

sp
o

n
se

 T
im

e

Utilisation

Pro Tip:
Ensure that you have
sufficient capacity

Queuing Theory

Little’s Law: L = λ * W

L = mean queue length

λ = mean arrival rate

W = mean time in system

Pro Tip:
Bound queues to meet
response time SLAs

Can we go parallel to

speedup?

ASequential Process

time

B

Amdahl’s Law

ASequential Process

A BParallel Process A

A

A

A

time

B

Amdahl’s Law

ASequential Process

Parallel Process B

A BParallel Process A

A

A

A

time

B

A B

B

B

B

Amdahl’s Law

Amdahl's Law

Universal Scalability Law

C(N) = N / (1 + α(N – 1) + ((β* N) * (N – 1)))

C = capacity or throughput

N = number of processors

α = contention penalty

β = coherence penalty

Universal Scalability Law

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32 64 128 256 512 1024

S
p

e
e

d
u

p

Processors

Amdahl USL

What about the service time?

Order of Algorithms

Practice

Pitfalls

Modern Processors

P & C
States???

Hyperthreading?

SMIs?

Non-Uniform Memory Architecture (NUMA)

P & C
States???

C 1 C n C 1 C nRegisters/Buffers

<1ns

L1 L1 L1 L1~4 cycles ~1ns

L2 L2 L2 L2~12 cycles ~3ns

L3 L3
~40 cycles ~15ns

~60 cycles ~20ns

(dirty hit)

~65ns

DRAM

QPI ~40ns
MC MC

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

DRAM

...

...

...

...

...

...

QPI QPIPCI-e 3 PCI-e 3

40X

IO

40X

IO

* Assumption: 3GHz Processor

Virtual Memory Management

Transparent
Huge Pages

Page Flushing &
IO Scheduling

vm.min_free_kbytes

Swap???

Safepoints in the JVM

Garbage Collection, De-optimisation,
Biased Locking, Stack traces, etc.

Virtualization

System Calls

Notification

public class SomethingUseful

{

// Lots of useful stuff

public void handOffSomeWork()

{

// prepare for handoff

synchronized (this)

{

someObject.notify();

}

}

}

Notification

public class SomethingUseful

{

// Lots of useful stuff

public void handOffSomeWork()

{

// prepare for handoff

synchronized (this)

{

someObject.notify();

}

}

}

Law of Leaky Abstractions

“All non-trivial abstractions,

to some extent, are leaky.”

- Joel Spolsky

Law of Leaky Abstractions

“The detail of underlying

complexity cannot be ignored.”

Mechanical Sympathy

Responding in the presence of failure

Algorithms & Techniques

Clean Room Experiments

• sufficient CPUs

• intel_idle.max_cstate=0

• cpufreq

• isocpus

• numctl, cgroups, affinity

• “Washed” SSDs

• network buffer sizing

• jHiccup

• tune your stack!

• Mechanical Sympathy

Profiling

Pro Tip:
Incorporate telemetry
and histograms

Smart Batching
La

te
n

c
y

Load

Typical

Possible

Smart Batching

Producers

Smart Batching

Batcher

Producers

<< Amortise Expensive Costs >>

Pro Tip:
Amortise the
Expensive Costs

Applying Backpressure

Transaction Service

ThreadsN
e

tw
o

rk

S
ta

c
k

Storage

ThreadsN
e

tw
o

rk

S
ta

c
k

Gateway Services

N
e

tw
o

rk

S
ta

c
k

IO

Customers

Non-Blocking Design

“Get out of your own way!”

• Don’t hog any resource

• Always try to make progress

• Enables Smart Batching

Pro Tip:
Beware of

hogging resources in
synchronous designs

Lock-Free Concurrent Algorithms

• Agree protocols of

interaction

• Don’t get a 3rd party

involved, i.e. the OS

• Keep to user-space

• Beat the “notify()”

problem

Observable State Machines

Pro Tip:
Observable state

machines make
monitoring easy

Cluster for Response and Resilience

Service A

Service A

Sequencer

Cluster for Response and Resilience

Service A

Service A

Sequencer

Cluster for Response and Resilience

Service A

Service A

Service N

Sequencer

Data Structures and O(?) Models

Is there a world beyond

maps and lists?

In closing…

The Internet of Things (IoT)

“There will be X connected

devices by 2020...”

Where X is 20 to 75 Billion

If you cannot control

arrival rates...

...you have to think hard

about improving service times!

...and/or you have to think hard

about removing all contention!

Questions?

Blog: http://mechanical-sympathy.blogspot.com/

Twitter: @mjpt777

“It does not matter how intelligent you are, if
you guess and that guess cannot be backed

up by experimental evidence –
then it is still a guess.”

- Richard Feynman

http://mechanical-sympathy.blogspot.com/

