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The Unaware





1. How to Test and Measure

2. A little bit of Theory

3. A little bit of Practice

4. Common Pitfalls

5. Useful Algorithms and Techniques



Test & Measure



System Under Test



Distributed Load 
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Distributed Load 
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Pro Tip:
Setup a continuous 

performance testing 
environment



Pro Tip: Record Everything



Latency Histograms
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System: 1000 TPS, mean RT 50µs



System: 1000 TPS, mean RT 50µs

What is the mean if you add in a 

25ms GC pause per second?



System: 1000 TPS, mean RT 50µs

What is the mean if you add in a 

25ms GC pause per second?

~300µs





Forget averages,

it’s all about percentiles



Source: Gil Tene (Azul Systems)

Coordinated Omission



Pro Tip: Don’t deceive yourself



Theory



Queuing Theory
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Queuing Theory

Kendall Notation

M/D/1



Queuing Theory

r = s(2 – ρ) / 2(1 – ρ)

r = mean response time

s = service time

ρ = utilisation



Queuing Theory

r = s(2 – ρ) / 2(1 – ρ)

r = mean response time

s = service time

ρ = utilisation

Note:   ρ = λ * (1 / s)



Queuing Theory
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Pro Tip:
Ensure that you have 
sufficient capacity



Queuing Theory

Little’s Law:  L = λ * W

L = mean queue length

λ = mean arrival rate

W = mean time in system



Pro Tip:
Bound queues to meet 
response time SLAs



Can we go parallel to 

speedup?



ASequential Process
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Amdahl's Law



Universal Scalability Law

C(N) = N / (1 + α(N – 1) + ((β* N) * (N – 1)))

C = capacity or throughput

N = number of processors

α = contention penalty

β = coherence penalty



Universal Scalability Law
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What about the service time?



Order of Algorithms



Practice













Pitfalls



Modern Processors

P & C
States???

Hyperthreading?

SMIs?



Non-Uniform Memory Architecture (NUMA)

P & C
States???

C 1 C n C 1 C nRegisters/Buffers 

<1ns

L1 L1 L1 L1~4 cycles ~1ns

L2 L2 L2 L2~12 cycles ~3ns

L3 L3
~40 cycles ~15ns

~60 cycles ~20ns 

(dirty hit)

~65ns

DRAM

QPI ~40ns
MC MC
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QPI QPIPCI-e 3 PCI-e 3

40X
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40X
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* Assumption: 3GHz Processor



Virtual Memory Management

Transparent 
Huge Pages

Page Flushing & 
IO Scheduling

vm.min_free_kbytes

Swap???



Safepoints in the JVM

Garbage Collection, De-optimisation, 
Biased Locking, Stack traces, etc.



Virtualization

System Calls



Notification

public class SomethingUseful

{

// Lots of useful stuff

public void handOffSomeWork() 

{

// prepare for handoff

synchronized (this) 

{

someObject.notify();

}

}

}



Notification
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// Lots of useful stuff

public void handOffSomeWork() 
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// prepare for handoff

synchronized (this) 
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}

}



Law of Leaky Abstractions

“All non-trivial abstractions,

to some extent, are leaky.”

- Joel Spolsky



Law of Leaky Abstractions

“The detail of underlying 

complexity cannot be ignored.”



Mechanical Sympathy



Responding in the presence of failure



Algorithms & Techniques



Clean Room Experiments

• sufficient CPUs

• intel_idle.max_cstate=0

• cpufreq

• isocpus

• numctl, cgroups, affinity

• “Washed” SSDs

• network buffer sizing

• jHiccup

• tune your stack!

• Mechanical Sympathy



Profiling



Pro Tip:
Incorporate telemetry 
and histograms
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Smart Batching

Producers



Smart Batching

Batcher

Producers

<< Amortise Expensive Costs >>



Pro Tip:
Amortise the 
Expensive Costs



Applying Backpressure

Transaction Service

ThreadsN
e

tw
o

rk
 

S
ta

c
k

Storage

ThreadsN
e

tw
o

rk
 

S
ta

c
k

Gateway Services

N
e

tw
o

rk
 

S
ta

c
k

IO

Customers



Non-Blocking Design

“Get out of your own way!”

• Don’t hog any resource

• Always try to make progress

• Enables Smart Batching



Pro Tip:
Beware of

hogging resources in 
synchronous designs 



Lock-Free Concurrent Algorithms 

• Agree protocols of 

interaction

• Don’t get a 3rd party 

involved, i.e. the OS

• Keep to user-space

• Beat the “notify()” 

problem



Observable State Machines



Pro Tip:
Observable state 

machines make 
monitoring easy



Cluster for Response and Resilience

Service A

Service A

Sequencer



Cluster for Response and Resilience
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Cluster for Response and Resilience

Service A

Service A

Service N

Sequencer



Data Structures and O(?) Models

Is there a world beyond

maps and lists? 



In closing…







The Internet of Things (IoT)

“There will be X connected 

devices by 2020...”

Where X is 20 to 75 Billion



If you cannot control

arrival rates...



...you have to think hard

about improving service times!



...and/or you have to think hard 

about removing all contention!



Questions?

Blog: http://mechanical-sympathy.blogspot.com/

Twitter: @mjpt777

“It does not matter how intelligent you are, if 
you guess and that guess cannot be backed 

up by experimental evidence –
then it is still a guess.”

- Richard Feynman

http://mechanical-sympathy.blogspot.com/

