
 Keynote ✨ ✨ ✨ ✨

The Paper Edition!

! " # $ %♥ ' ! " # $ %♥ ' ! " # $ %♥ ' ! "

! " # $ %♥ ' ! " # $ %♥ ' ! " # $ %♥ ' ! "

#$ %♥ ' ! "# $ %♥ ' ! "# $ %♥ ' ! " $ %

♥ ' ! "# $ %♥ ' ! "# $ % # $ %♥♥ ' ! " $

! " # $ %♥ ' ! ! "' ! "% # $ %♥ '♥ $ %♥

Agile, Lean, Rugged

First

.Introductions

@Randommood

Ines Sombra

@adriancolyer
Adrian Colyer

The Rules
Only 5 minutes per paperFoundation

!
Frontier

A challenge!

No Cheating!

A paper tour of

Agile

Foundation
!

We disdain old software

“The only systems that
don’t get changed are
those that are so bad
nobody wants to use

them”

When software gets older

Design for change
Embrace modularity & information hiding
Stress clarity & documentation
Amputate disease-ridden parts
Plan for eventual replacement

Preventative medicine

Frontier

What do we want? We want agile
Development
Testing and
verification
Delivery

and we want
agility of

operations too!

Facebook Scuba

👇
Data lives in server’s heap

The problem with state

Restarting a database clears its memory
Reading 120GB of data from disk takes
about 3 hours per server (8 per machine)
Even with orchestrated restarts & partial
queries total of ~12 hours to restart a fleet

Operationally
expensive & slow!

😭

“When we shutdown a server
for a planned upgrade, we

know that the memory state
is good… so we decided to

decouple the memory’s
lifetime from the process’s

lifetime“

2-3 minutes per server

Fleet restarts < 1 hour now!

😊

A paper tour of

Lean

Foundation
!

Which system is better?

Single-minded
pursuit of scalability

is the wrong goal

Common wisdom
Effective scaling is
evidence of solid
system building

Why does this happen?

McSherry et al.
Any system can scale
arbitrarily well with a
sufficient lack of care
in its implementation

! " # $ %♥ ' ! " # $ %♥ ' ! " # $ %♥ ' ! "

#$ %♥ ' ! "# $ %♥ ' ! "# $ %♥ ' ! " $ %

♥ ' ! "# $ %♥ ' ! "# $ % # $ %♥♥ ' ! " $

! " # $ %♥ ' ! ! "' ! "% # $ %♥ '♥ $ %♥

#$ %♥ ' ! "# $ %♥ ' ! "# $ %♥ ' ! " $ %
♥ ' ! "# $ %♥ ' ! "# $ % # $ %♥♥ ' ! " $

! " # $ %♥ ' ! " # $ %♥ ' ! " # $ %♥ ' ! "

#$ %♥ ' ! "# $ %♥ ' ! "# $ %♥ ' ! " $ %

♥ ' ! "# $ %♥ ' ! "# $ % # $ %♥♥ ' ! " $

! " # $ %♥ ' ! ! "' ! "% # $ %♥ '♥ $ %♥
#$ %♥ ' ! "# $ %♥ ' ! "# $ %♥ ' ! " $ %

♥ ' ! "# $ %♥ ' ! "# $ % # $ %♥♥ ' ! " $

COST

Configuration that outperforms a single
thread
COST of a system is the hardware
platform (number of cores) required before
the platform outperforms a competent
single threaded implementation

“If you’re building a system,
make sure it’s better than

your laptop. If you’re using a
system, make sure it’s better

than your laptop”
McSherry

Frontier

Sampling works!

Error bounds & confidence

Don’t ask wasteful
questions

A paper tour of

Rugged

Foundation
!

Strategies to enhance
ruggedness in the
presence of failures
Better way to think about
system availability

Ruggedness as availability

Harvest: fraction of
the complete result

Yield: fraction of
answered queries

Yield as response ruggedness

Close to uptime (% requests answered
successfully) but more useful because it
directly maps to user experience
Failure during high & low traffic generates
different yields. Uptime misses this

Focus on yield rather than uptime

Harvest as quality of response

From Coda Hale’s “You can’t sacrifice partition tolerance”

Server A Server B Server C

Baby AnimalsCute X
66% harvest

#1: Probabilistic Availability

Graceful harvest degradation under faults

Randomness to make the worst-case &
average-case the same

Replication of high-priority data for greater
harvest control

Degrading results based on client capability

#2 Decomposition & Orthogonality

Decomposing into subsystems independently
intolerant to harvest degradation (fail by
reducing yield). But app can continue if they fail

Only provide strong consistency for the
subsystems that need it

Orthogonal mechanisms (state vs functionality)

💪

Frontier

Ruggedness via verification

Formal
Methods Testing

TOP-DOWN

FAULT INJECTORS, INPUT GENERATORS

BOTTOM-UP

LINEAGE DRIVEN FAULT INJECTORS

WHITE / BLACK BOX

WE KNOW (OR NOT) ABOUT THE SYSTEM

HUMAN ASSISTED PROOFS

SAFETY CRITICAL (TLA+, COQ, ISABELLE)

MODEL CHECKING

PROPERTIES + TRANSITIONS (SPIN, TLA+)

LIGHTWEIGHT FM

BEST OF BOTH WORLDS (ALLOY, SAT)

👈

! " # $ %♥ ' ! " # $ %♥ ' ! " # $ %♥ ' ! "

#$ %♥ ' ! "# $ %♥ ' ! "# $ %♥ ' ! " $ %

♥ ' ! "# $ %♥ ' ! "# $ % # $ %♥♥ ' ! " $

! " # $ %♥ ' ! ! "' ! "% # $ %♥ '♥ $ %♥

#$ %♥ ' ! "# $ %♥ ' ! "# $ %♥ ' ! " $ %
♥ ' ! "# $ %♥ ' ! "# $ % # $ %♥♥ ' ! " $

! " # $ %♥ ' ! " # $ %♥ ' ! " # $ %♥ ' ! "

#$ %♥ ' ! "# $ %♥ ' ! "# $ %♥ ' ! " $ %

♥ ' ! "# $ %♥ ' ! "# $ % # $ %♥♥ ' ! " $

! " # $ %♥ ' ! ! "' ! "% # $ %♥ '♥ $ %♥
#$ %♥ ' ! "# $ %♥ ' ! "# $ %♥ ' ! " $ %

♥ ' ! "# $ %♥ ' ! "# $ % # $ %♥♥ ' ! " $

MOLLY: Lineage Driven Fault Injection

Reasons backwards from correct
system outcomes & determines if a
failure could have prevented it
MOLLY only injects the failures it can
prove might affect an outcome

Ruggedness with MOLLY

“Without explicitly
forcing a system to
fail, you have no
confidence that it
will operate
correctly in failure
modes”

Caitie McCaffrey’s pearls of wisdom

💁 🐵

Verifier
Programmer

MOLLY helps us undestand failure

“Presents a middle ground
between pragmatism and
formalism, dictated by the

importance of verifying fault
tolerance in spite of the

complexity of the space of
faults”

Now let’s

.Wrap things

Agile Lean Rugged
tl;dr - foundations

A scalable
system may
not be a lean
system
Pursuing
scalability out
of context can
be COSTly

Designing for
change is
designing for
success

Think about
availability in
terms of yield
and harvest

Graceful
degradation is a
design outcome

! !

Agile Lean Rugged
tl;dr - Frontiers

Asking the
wrong question
is wasteful

Think about
what is truly
needed

Use
approximations

State can be
challenging

Saving state in
shared
memory allows
us to restart
DB processes
faster

Reasoning
backwards from
correct system
output helps us
determine the
execution
failures that
prevent it from
happening

Join your local PWL and
read The Morning Paper!

github.com/Randommood/GotoLondon2015
Papers are a lot of fun!🎓

✨ ✨
🍻🍷 🍸🍹 🍻🍷 🍸🍹 🍻🍷 🍸🍹 🍻🍷 🍸🍹 🍻🍷 🍸🍹 🍻🍷 🍸

🍻🍷 🍸🍹🍻🍷 🍸🍹🍻🍷 🍸🍹🍻🍷 🍸🍹🍻🍷 🍸🍹🍻🍷 🍸

DRANKS!

