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the morning paper

an interesting/influential/important paper from the world of CS every weekday morning, as selected by Adrian Colyer

Mining and Summarizing Customer Reviews susscrise

AUGUST 28, 2015

Mining and Summarizing Customer Reviews — Hu and Liu 2004

This is the third of the three ‘test-of-time’ award winners from KDD’15. From the awards page:

The paper introduces the problem of summarizing customer reviews and
decomposes the problem into the three steps of (1) mining product features (aspects),
(2) identifying opinion sentences and their corresponding feature in each review and
(3) summarizing the results. The paper has inspired the new research direction of
Aspect-Based Sentiment Analysis/Aspect-Based Opinion Mining, and the proposed
framework has been widely adopted in research and applications, as seen from the
very large number of citations.

The goal is to mine an existing corpus of product reviews and produce summaries of the form:

Digital Camera XYZ:
Feature: Picture Quality
Positive: 253
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Software Aging

&

- Foundation

Invited Plenary Talk

David Lorge Parnas

Communications Research Laboratory
Department of Electrical and Computer Engineering
McMaster University, Hamilton, Ontario, Canada L8S 4K1

ABSTRACT

Programs, like people, get old. We can’t prevent
aging, but we can understand its causes, take steps to
limits its effects, temporarily reverse some of the
damage it has caused, and prepare for the day when
the software is no longer viable. A sign that the
Software Engineering profession has matured will be
that we lose our preoccupation with the first release
and focus on the long term health of our products.
Researchers and practitioners must change their
perception of the problems of software development.
Only then will Software Engineering deserve to be
called Engineering.

inevitable, but like human aging, there are things that
we can do to slow down the process and, sometimes,
even reverse its effects.

Software aging 1s not a new phenomenon, but it is
gaining in significance because of the growing eco-
nomic importance of software and the fact that in-
creasingly, software 1s a major part of the “capital” of
many high-tech firms. Many old software products
have become essential cogs in the machinery of our
society. The aging of these products i1s impeding the
further development of the systems that include
them.

The authors and owners of new software products
often look at aging software with disdain. Thev be-







“The only systems that
don't get changed are

those that are so bad
nobody wants to use
them”







Design for change

Embrace modularity & information hiding
Stress clarity & documentation

Amputate disease-ridden parts

Plan for eventual replacement



Fast Database Restarts at Facebook

Aakash Goel,* Bhuwan Chopra, Ciprian Gerea, Dhruv Matani,

Josh Metzler, Fahim Ul Haq, and Janet L. Wiener
Facebook, Inc.

ABSTRACT

Facebook engineers query multiple databases to monitor and
analyze Facebook products and services. The fastest of
these databases is Scuba, which achieves subsecond query
response time by storing all of its data in memory across
hundreds of servers. We are continually improving the code
for Scuba and would like to push new software releases at
least once a week. However, restarting a Scuba machine
clears its memory. Recovering all of its data from disk —
about 120 GB per machine — takes 2.5-3 hours to read and
format the data per machine. Even 10 minutes is a long
downtime for the critical applications that rely on Scuba,
such as detecting user-facing errors. Restarting only 2% of
the servers at a time mitigates the amount of unavailable
data, but prolongs the restart duration to about 12 hours,
during which users see only partial query results and one
engineer needs to monitor the servers carefully. We need
a faster, less engineer intensive, solution to enable frequent
software unerades.

1. INTRODUCTION

Facebook engineers query multiple database systems to
monitor and analyze Facebook products and services. Scuba/5]
is a very fast, distributed, in-memory database used exten-
sively for interactive, ad hoc, analysis queries. These queries
typically run in under a second over GBs of data. Scuba pro-
cesses almost a million queries per day for over 1500 Face-
book employees. In addition, Scuba is the workhorse behind
Facebook’s code regression analysis, bug report monitoring,
ads revenue monitoring, and performance debugging.

One significant source of downtime is software upgrades,
yet upgrades are necessary to introduce new features and
apply bug fixes. At Facebook, we are accustomed to the
agility that comes with frequent code deployments. New
code is rolled out to our web product multiple times each
week [9]. The Facebook Android Alpha program also re-
leases code multiple times a week [18, 17]. We would like to
deploy new code to Scuba at least once a week as well.

However, any downtime on Scuba’s part is a problem for
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Data lives in server’s heap
=¥

Data flow through Scuba
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Operationally
expensive & slow!

Restarting a database clears its memory

Reading 120GB of data from disk takes o
about 3 hours per server (8 per machine)

Even with orchestrated restarts & partial
queries total of ~12 hours to restart a fleet




"When we shutdown a server
for a planned upgrade, we
know that the memory state
IS good... so we decided to
ecouple the memory's
lifetime from the process'’s
lifetime”




Fleet restarts <1 hour now!
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Scalability! But at what COST?

Frank McSherry
Unaffiliated

Abstract

We offer a new metric for big data platforms, COST,
or the Configuration that Outperforms a Single Thread.
The COST of a given platform for a given problem is the
hardware configuration required before the platform out-
performs a competent single-threaded implementation.
COST weighs a system’s scalability against the over-
heads introduced by the system, and indicates the actual
performance gains of the system, without rewarding sys-
tems that bring substantial but parallelizable overheads.

We survey measurements of data-parallel systems re-
cently reported in SOSP and OSDI, and find that many
systems have either a surprisingly large COST, often
hundreds of cores, or simply underperform one thread
for all of their reported configurations.

Michael Isard
Microsoft Research

Derek G. Murray
Unaffiliated™

system B

10 100 300 100 300
cores cores

Figure 1: Scaling and performance measurements
for a data-parallel algorithm, before (system A) and
after (system B) a simple performance optimization.
The unoptimized implementation ‘‘scales’ far better,
despite (or rather, because of) its poor performance.

argue that many published big data systems more closely
resemble system A than they resemble system B.
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.......................
pursuit of scalability
Is the wrong goa




Common wisdom McSherry et al.

Effective scalingis  Any system can scale
evidence of solid arbitrarily well with a
system building sufficient lack of care

In its Implementation




Configuration that outperforms a single
thread

COST of a system is the hardware
platform (number of cores) required before
the platform outperforms a competent
single threaded implementation




System (# cores)

Elapsed times for 20 PageRank iterations

Single thread — RAM (1)
Single thread — SSD (1)
GraphX (128)

GraphLab (128)

Giraph (128)

Spark (128)

X-Stream (16)
Stratosphere (16)
GraphChi (2)
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“If you’re building a system,
make sure it’s better than
vour laptop. If you’re using a
system, make sure it’s better
than your laptop”




ApproxHadoop: Bringing Approximations
to MapReduce Frameworks

[iiigo Goiri™*  Ricardo Bianchini'?

*Rutgers University

Santosh Nagarakatte*

Thu D. Nguyen?

TMicrosoft Research

{ricardob, santosh.nagarakatte, tdnguyen } @cs.rutgers.edu {inigog, ricardob } @ microsoft.com

Abstract

We propose and evaluate a framework for creating and run-
ning approximation-enabled MapReduce programs. Specif-
ically, we propose approximation mechanisms that fit nat-
urally into the MapReduce paradigm, including input data
sampling, task dropping, and accepting and running a pre-
cise and a user-defined approximate version of the MapRe-
duce code. We then show how to leverage statistical theories
to compute error bounds for popular classes of MapReduce
programs when approximating with input data sampling
and/or task dropping. We implement the proposed mech-
anisms and error bound estimations in a prototype system
called ApproxHadoop. Our evaluation uses MapReduce ap-
plications from different domains, including data analytics,
smentlﬁc computlng, v1deo encodlng, and machme learmng

1. Introduction

Motivation. Despite the enormous computing capacity
that has become available, large-scale applications such
as data analytics and scientific computing continue to ex-
ceed available resources. Furthermore, they consume sig-
nificant amounts of time and energy. Thus, approximate
computing has and continues to garner significant attention
for reducing the resource requirements, computation time,
and/or energy consumption of large-scale computing (e.g.,
(5, 6,10, 17, 38]). Many classes of applications are amenable
to approximation, including data analytics, machine learn-
ing, Monte Carlo computations, and image/audio/video pro-
cessing [4, 14, 25, 30, 41]. As a concrete example, Web site
operators often want to know the popularity of individual
Web pages, which can be computed from the access logs

~ .1 . xXxX7Tr 1 TrTrT 1 4 1 4 .
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Hive on Hadoop I

Hive on Spark (without caching)
Hive on Spark (with caching)
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Sample size = 2,401

Margin of error =2%

Sample size = 1,067

Margin of error =3%

Sample size = 600
Margin of error = 4%

Sample size = 384

Margin of error = 5%

Sample size = 96

Margin of error =10%




Don't ask wasteful
questions




Rugged




Harvest, Yield, and Scalable Tolerant Systems

Armando Fox
Stanford University
fox@cs.stanford.edu

Abstract

The cost of reconciling consistency and state manage-
ment with high availability is highly magnified by the un-
precedented scale and robustness requirements of today’s
Internet applications. We propose two strategies for im-
proving overall availability using simple mechanisms that
scale over large applications whose output behavior toler-
ates graceful degradation. We characterize this degradation
in terms of harvest and yield, and map it directly onto engi-
neering mechanisms that enhance availability by improving
fault isolation, and in some cases also simplify program-
ming. By collecting examples of related techniques in the
literature and illustrating the surprising range of applica-
tions that can benefit from these approaches, we hope to
motivate a broader research program in this area.

Eric A. Brewer

University of California at Berkeley

brewer@cs.berkeley.edu

degrading functionality rather than lack of availability of the
service as a whole. The approaches were developed in the
context of cluster computing, where it 1s well accepted [22]
that one of the major challenges 1s the nontrivial software
engineering required to automate partial-failure handling in
order to keep system management tractable.

2. Related Work and the CAP Principle

In this discussion, strong consistency means single-
copy ACID [13] consistency; by assumption a strongly-
consistent system provides the ability to perform updates,
otherwise discussing consistency is irrelevant. High avail-
ability 1s assumed to be provided through redundancy, e.g.
data replication; data is considered highly available if a
given consumer of the data can always reach some replica.

| B PR




Ruggedness as availability §

Strategies to enhance
ruggedness in the
presence of failures

Better way to think about
system availability
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Yield: fraction of
answered queries

Harvest: fraction of
the complete result




Close to uptime (% requests answered
successfully) but more useful because it
directly maps to user experience

Failure during high & low traffic generates
different yields. Uptime misses this

Focus on yield rather than uptime




Harvest as quality of response

data available
harvest = ———————

66% harvest total data

" ANIMals '

Server C

Server A

From Coda Hale’s “You can'’t sacrifice partition tolerance”



Graceful harvest degradation under faults

Randomness to make the worst-case &
average-case the same

Replication of high-priority data for greater
harvest control

Degrading results based on client capability



Decomposing into subsystems independently '~
intolerant to harvest degradation (failby -
reducing yield). But app can continue if they fail

Only provide strong consistency for the
subsystems that need it

Orthogonal mechanisms (state vs functionality)



Lineage-driven Fault Injection

Peter Alvaro
UC Berkeley

palvaro@cs.berkeley.edu

ABSTRACT

Failure is always an option; in large-scale data management sys-
tems, it is practically a certainty. Fault-tolerant protocols and com-
ponents are notoriously difficult to implement and debug. Worse
still, choosing existing fault-tolerance mechanisms and integrating
them correctly into complex systems remains an art form, and pro-
grammers have few tools to assist them.

We propose a novel approach for discovering bugs in fault-tolerant
data management systems: lineage-driven fault injection. A lineage-

driven fault injector reasons backwards from correct system out-
comes to determine whether failures in the execution could have
prevented the outcome. We present MOLLY, a prototype of lineage-
driven fault injection that exploits a novel combination of data lin-
eage techniques from the database literature and state-of-the-art
satisfiability testing. If fault-tolerance bugs exist for a particular
configuration, MOLLY finds them rapidly, in many cases using an
order of magnitude fewer executions than random fault injection.
Otherwise, MOLLY certifies that the code is bug-free for that con-
figuration.

Joshua Rosen
UC Berkeley

rosenville@gmail.com

Joseph M. Hellerstein
UC Berkeley

hellerstein@cs.berkeley.edu

enriching new system architectures with well-understood fault tol-
erance mechanisms and henceforth assuming that failures will not
affect system outcomes. Unfortunately, fault-tolerance is a global
property of entire systems, and guarantees about the behavior of
individual components do not necessarily hold under composition.
It 1s difficult to design and reason about the fault-tolerance of indi-
vidual components, and often equally difficult to assemble a fault-
tolerant system even when given fault-tolerant components, as wit-
nessed by recent data management
bugs [36,49].

Top-down testing approaches—
behavior of complex systems—are
fication of individual components.
i1s the dominant top-down approag
and dependability communities.
vestment, fault injection can quic
by a small number of independent % 4
jection is poorly suited to discove
volving complex combinations of
faults (e.g., a network partition foll
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Ruggedness via verification

Formal :
Methods lesting

SAFETY CRITICAL (TLA+, COQ, ISABELLE) FAULT INJECTORS, INPUT GENERATORS

PROPERTIES + TRANSITIONS (SPIN, TLA+) LINEAGE DRIVEN FAULT INJECTORS

BEST OF BOTH WORLDS (ALLOY, SAT) WE KNOW (OR NOT) ABOUT THE SYSTEM




Reasons backwards from correct
system outcomes & determines if a

failure could have prevented it

MOLLY only injects the failures It can
prove might affect an outcome




Ruggedness with MOLLY

SAT

failure scenarios
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Concrete
evaluator

Verifier

CNF formula

| Hazard
analysis

1. Program

2. Topology
3. Inputs
4. Assertions

pass

Programmer
Program output

+ lineage

"Without explicitly
forcing a system to
fail, you have no
confidence that it
will operate
correctly in failure
modes”

Caitie McCaffrey’s pearls of wisdom




MOLLY helps us undestand failure
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"Presents a middle grouna
between pragmatism and
formalism, dictated by the
importance of verifying fault
tolerance in spite of the
complexity of the space of
faults”
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designing for
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