
Scaling Open Source
Projects from 0-1000

Commits
Barak Michener

~100 Open Source repos on
Github

dex, fleet,
mayday, etc...

#gifee

Google’s
Infrastructure For

Everyone Else

http://github.com/google/cayley

http://github.com/google/cayley
http://github.com/google/cayley

0
commits

$ git init .

Skeleton
● You may want one for your org
● Standard choice of licenses, Make/BUILD files
● README.md
● CONTRIBUTING.md

A note on Licenses:

PICK ONE.
http://choosealicense.com/

Only ~20% of Github repos have a
license. Don’t be “that project”.

http://choosealicense.com/
http://choosealicense.com/

Code Style
● Mandate by fiat for your project/org

○ Avoid bikeshedding
● Big plug for Go here, gofmt is awesome
● PEP8 for Python fans
● Always an option: Adopt (or fork) from Google

○ https://github.com/google/styleguide
● Mention this in CONTRIBUTING.md

https://github.com/google/styleguide
https://github.com/google/styleguide

200
commits

The past 200 commits
● Commit messages may have been messy

○ more work
○ remove cruft, add test
○ Don’t do this in general, but we all get

started and rebasing is fine, until now.
● Getting things working
● Super fast iteration

What if it doesn’t work out?
● That’s okay!

○ Experimentation should be more
encouraged

○ “Fail fast”
○ Rebasing early is okay too

■ Your teammates may hate you a little,
but only a little.

Prepping for Announce
● Mailing list
● IRC Channel?
● ...And two important things

From “Hierarchy of Developer Needs” by +JuliaFerraioli

https://plus.google.com/+JuliaFerraioli

ROADMAP.md
(Pull requests accepted.)

Announce!
The sooner you’re working in the public

sphere, the better.

400
commits

The past 200 commits
● Real commit messages, PRs, code review

○ subpackage: Add new feature
doing X. Fixes #23.

● Still early, things subject to change.
○ Don’t be afraid to experiment, and break a

few things

First external contributors!
● Treat them like gold.
● If you have to answer the same question three

times, write a three paragraph answer. Start
your wiki/FAQ.md/Documentation file.

Optional: Benchmarks
● They don’t have to be perfect
● Having them means measurement, and

numbers help quantify decisions
● Shout-out for Go again

$ benchx boltnoproto boltwproto

benchmark old ns/op new ns/op delta mult

BenchmarkNamePredicate 536192 519102 -3.19% -1.03x

BenchmarkLargeSetsNoIntersection 25406759 16517821 -34.99% -1.54x

BenchmarkVeryLargeSetsSmallIntersection 55738157 38773174 -30.44% -1.44x

BenchmarkHelplessContainsChecker 72689377 50568672 -30.43% -1.44x

BenchmarkHelplessNotContainsFilms 125709712 82282494 -34.55% -1.53x

BenchmarkHelplessNotContainsActors 101334859 67082261 -33.80% -1.51x

BenchmarkNetAndSpeed 5530942 4847584 -12.36% -1.14x

BenchmarkKeanuAndNet 4399839 4081278 -7.24% -1.08x

BenchmarkKeanuAndSpeed 5144942 4554785 -11.47% -1.13x

BenchmarkKeanuOther 16995806 12897262 -24.12% -1.32x

BenchmarkKeanuBullockOther 26998991 19858152 -26.45% -1.36x

600
commits

The past 200 commits
● A couple of early releases
● Semantic versioning
● Support!

Felicia Bond, Illustrator - CC BY-SA 3.0

If you give a mouse a
binary...

...he’s
going to
put it into
production.

Support is great
● Means people have a need for your project
● Finds bugs

However,

● Sometimes a burden on small teams

WTFM
● You’re the person who knows the most about

your project
● Sourcing writers is hard, and you won’t have

many at this stage
● Roll up your sleeves and write the docs
● Pay attention to UX as well
● Closing bugs with a pleasant “Hi, thanks for

your question; we’ve committed an answer
here based on it” helps everyone!

http://example.com
http://example.com

800
commits

The past 200 commits
● Prep for 1.0
● Stabilize APIs
● Major refactors tricky but possible

0.4.6 -> 2.0.0

1000
commits

Where do we go from here?
● Release cadence
● stable/master

○ 2.0.x on stable, 2.1alpha/rc on master
○ 2.1.x on stable, 2.2alpha/rc on master

● ???
● Profit!

Thanks !

@barakmich
@coreoslinux

