
Dave Farley
http://www.davefarley.net
@davefarley77

http://www.continuous-delivery.co.uk

The Rationale For
Continuous Delivery
Or

What Does ‘Good’ Look Like?

http://www.davefarley.net

The State of Software Development

The State of Software Development
Source: KPMG (New Zealand)
Date: 2010

In a study of project management practices:

1) 70% of organizations have suffered at least one
project failure in the last 12 months

2) 50% of respondents indicated that their projects
consistently failed to achieve what they set out to
achieve.

The State of Software Development
Source: KPMG (New Zealand)
Date: 2010

In a study of project management practices:

1) 70% of organizations have suffered at least one
project failure in the last 12 months

2) 50% of respondents indicated that their projects
consistently failed to achieve what they set out to
achieve.

Source: KPMG – Global IT Management
Survey
Date: 2005

In a survey of 600 projects worldwide:

1) 49% of organisations had suffered a project failure
in the past 12 months

2) 2% of organisations reported that all of their
projects achieved their desired benefits.

The State of Software Development
Source: KPMG (New Zealand)
Date: 2010

In a study of project management practices:

1) 70% of organizations have suffered at least one
project failure in the last 12 months

2) 50% of respondents indicated that their projects
consistently failed to achieve what they set out to
achieve.

Source: KPMG – Global IT Management
Survey
Date: 2005

In a survey of 600 projects worldwide:

1) 49% of organisations had suffered a project failure
in the past 12 months

2) 2% of organisations reported that all of their
projects achieved their desired benefits.

Source: Logica Management Consulting
Date: 2008

In a survey of 380 senior execs in Western Europe:

1) 35% of organisations abandoned a major project
in the last 3years

2) 37% of business change programmes fail to
deliver benefits.

The State of Software Development
Source: KPMG (New Zealand)
Date: 2010

In a study of project management practices:

1) 70% of organizations have suffered at least one
project failure in the last 12 months

2) 50% of respondents indicated that their projects
consistently failed to achieve what they set out to
achieve.

Source: KPMG – Global IT Management
Survey
Date: 2005

In a survey of 600 projects worldwide:

1) 49% of organisations had suffered a project failure
in the past 12 months

2) 2% of organisations reported that all of their
projects achieved their desired benefits.

Source: Logica Management Consulting
Date: 2008

In a survey of 380 senior execs in Western Europe:

1) 35% of organisations abandoned a major project
in the last 3years

2) 37% of business change programmes fail to
deliver benefits.

Source: The McKinsey Group with Oxford
University
Date: 2012

In a study of 5,400 large scale projects (> $15m):

1) 17% of projects go so badly that they threaten the
existence of the company performing them.

2) On average large projects run 45% over budget
and 7% over time while delivering 56% less value
than predicted.

The State of Software Development
Has Been Err…. Sub-Optimal

The State of Software Development
Has Been Err…. Sub-Optimal

The State of Software Development
Has Been Err…. Sub-Optimal

But there are signs of change…

What Have We Tried?

What Have We Tried?

What Have We Tried?

What Have We Tried?

What Have We Tried?

What Have We Tried?

What Have We Tried?

What Have We Tried?

What Have We Tried?

What Have We Tried?

What Have We Tried?

Learning From Our Mistakes

Learning From Our Mistakes

“Insanity is doing the
 same thing over and
 over again and
 expecting different
 results.”
 Albert Einstein

What Do We Really Want?

Customer

Feedback

Business Idea

What Do We Really Want?

Customer

Feedback

Business Idea

Quickly
Cheaply
Reliably

A Question….

A Question….

What is the most successful
invention in human history?

A Question….

SCIENCE

The Scientific Method

Characterisation Make a guess based on experience and observation.

Hypothesis Propose an explanation.

Deduction Make a prediction from the hypothesis.

Experiment Test the prediction.

Repeat!

What Works?

57%
14%

29%

Challenged
Successful
Failed

49%
42%

9%

Source: The CHAOS Manifesto, The Standish Group 2012

AgileWaterfall

What Works? - More Data

30%

64%

6% 21%

72%

7% 28%

65%

7%

35%

50%

15%
32%

49%

18%

Source: Scott Ambler, Dr. Dobbs Journal, Feb 2014
(http://www.drdobbs.com/architecture-and-design/the-non-existent-software-crisis-debunki/240165910)

Agile Lean Iterative

Ad-Hoc Traditional

What Works? - More Data

30%

64%

6% 21%

72%

7% 28%

65%

7%

35%

50%

15%
32%

49%

18%

Source: Scott Ambler, Dr. Dobbs Journal, Feb 2014
(http://www.drdobbs.com/architecture-and-design/the-non-existent-software-crisis-debunki/240165910)

Agile Lean Iterative

Ad-Hoc Traditional

Lean Thinking …

• Deliver Fast
• Build Quality In
• Optimise the Whole
• Eliminate Waste

• Unnecessary Variations (Mura)
• Overburden (Muri)
• Wasteful activities (Muda)

• Amplify Learning
• Decide Late
• Empower the Team

Smart Automation - a repeatable, reliable process for releasing
software

Unit Test CodeIdea Executable
spec. Build Release

What Really Works?

Smart Automation - a repeatable, reliable process for releasing
software

Unit Test CodeIdea Executable
spec. Build Release

What Really Works?

Smart Automation - a repeatable, reliable process for releasing
software

Unit Test CodeIdea Executable
spec. Build Release

“It doesn’t matter how intelligent you are, if
you guess and that guess cannot be backed
up by experimental evidence – then it is still
a guess!”
 - Richard Feynman

What Really Works?

Cycle-Time

103 days

Typical Traditional Cycle
Time 10 days

64 days

Cycle-Time

Commit Stage
Compile
Unit test
Analysis

Build Installers

Automated
acceptance

testing

Automated
performance

testing

Manual testing

Release

57 mins

3 mins 20 mins

20 mins

30 mins

4 mins

Typical CD Cycle Time

103 days

Typical Traditional Cycle
Time 10 days

64 days

What Is Continuous Delivery?
“Our highest priority is to satisfy the customer through

early and continuous delivery of valuable software.”

The first principle of the agile manifesto.

The logical extension of continuous integration.

A holistic approach to development.

Every commit creates a release candidate.

Finished means released into production!

The Principles of Continuous Delivery
Create a repeatable, reliable process for releasing software.

Automate almost everything.

Keep everything under version control.

If it hurts, do it more often – bring the pain forward.

Build quality in.

Done means released.

Everybody is responsible for the release process.

Improve continuously.

The Principles of Continuous Delivery
Create a repeatable, reliable process for releasing software.

Automate almost everything.

Keep everything under version control.

If it hurts, do it more often – bring the pain forward.

Build quality in.

Done means released.

Everybody is responsible for the release process.

Improve continuously.

“If Agile software development
was the opening act to a great

performance, Continuous
Delivery is the headliner.”

Forrester Research 2013

What Does This Look Like?

Example Continuous Delivery Process

Local Dev. Env.

Source
Repository

Example Continuous Delivery Process

Local Dev. Env.

Source
Repository

Example Continuous Delivery Process

Local Dev. Env. Commit

Source
Repository

Example Continuous Delivery Process

Local Dev. Env. Commit

Source
Repository

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env. Commit

Source
Repository

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env. Commit

Commit

Source
Repository

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Commit

Source
Repository

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Commit

Source
Repository

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Commit
Acceptance

Source
Repository

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Commit
Acceptance

Source
Repository

Manual Test Env.

Deployment
App.

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Commit
Acceptance

Source
Repository

Manual Test Env.

Deployment
App.

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Commit
Acceptance

Manual

Source
Repository

Manual Test Env.

Deployment
App.

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

Commit
Acceptance

Manual

Source
Repository

Manual Test Env.

Deployment
App.

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

Commit
Acceptance

Manual

Source
Repository

Manual Test Env.

Deployment
App.

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

Commit
Acceptance

Manual

Perf1

Source
Repository

Manual Test Env.

Deployment
App.

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Commit
Acceptance

Manual

Perf1

Source
Repository

Manual Test Env.

Deployment
App.

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Commit
Acceptance

Manual

Perf1

Source
Repository

Manual Test Env.

Deployment
App.

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Commit
Acceptance

Manual

Perf1
Perf2

Source
Repository

Manual Test Env.

Deployment
App.

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Commit
Acceptance

Manual

Perf1
Perf2

Source
Repository

Manual Test Env.

Deployment
App.

Data
Migration

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Commit
Acceptance

Manual

Perf1
Perf2

Source
Repository

Manual Test Env.

Deployment
App.

Data
Migration

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Commit
Acceptance

Manual

Perf1
Perf2

Staged

Source
Repository

Manual Test Env.

Deployment
App.

Data
Migration

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Production Env.

Deployment
App.

Commit
Acceptance

Manual

Perf1
Perf2

Staged

Source
Repository

Manual Test Env.

Deployment
App.

Data
Migration

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Production Env.

Deployment
App.

Commit
Acceptance

Manual

Perf1
Perf2

Staged

Source
Repository

Manual Test Env.

Deployment
App.

Data
Migration

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Acceptance

Commit

Component
Performance

System
Performance

Production Env.

Deployment
App.

Commit
Acceptance

Manual

Perf1
Perf2

Staged

Production

Source
Repository

Manual Test Env.

Deployment
App.

Data
Migration

Example Continuous Delivery Process

Artifact
Repository

Local Dev. Env.

Deployment Pipeline

Acceptance

Commit

Component
Performance

System
Performance

Production Env.

Deployment
App.

Commit
Acceptance

Manual

Perf1
Perf2

Staged

Production

Source
Repository

Manual Test Env.

Deployment
App.

Data
Migration

“This may work for small projects but can’t possibly scale”

“This may work for small projects but can’t possibly scale”

The Google Build Process

• Single Monolithic Repository

• Continuous Build & Test on Commit For:

• > 60 Million builds per year and growing exponentially.

• > 100 Million lines of code.

• All tests are run on every commit, (>20 commits per
minute).

• > 100 Million test cases executed per day.

“This is too risky, releasing all the time is a recipe for disaster”

“This is too risky, releasing all the time is a recipe for disaster”

The Amazon Build Process

• Mean time between deployment - 11.6 seconds

• Mean hosts simultaneously receiving a deployment - 10,000

• 75% reduction in outages triggered by deployment between
2006 and 2011

• 90% reduction in outage minutes triggered by deployment

• ~0.001% of deployments cause an outage

• Instantaneous rollback

• Reduction in complexity

“This may work for simple web sites but my
technology is too complex”

“This may work for simple web sites but my
technology is too complex”

•Transformation of Development Approach for all LaserJet
Firmware Products

• Large Complex Project
•Multiple Products
•Four Year Timeframe
• 10x Developer Productivity Increase

HP Laserjet Firmware Team Experience

HP LaserJet Firmware Team

10% Code Integration
20% Detailed Planning
25% Porting Code
25% Product Support
15% Manual Testing
~5% Innovation

 2% Continuous
Integration
 5% Agile Planning
15% Architectural Integrity
10% Unified Support
 5% Automated Testing
 3% Improving Tools
10% Writing Tests
~40% Innovation

2008 2011

The Results

A Practical Approach to Large scale Agile Development (Gruver, Young and Fulgrhum)

• Overall development costs reduced by ~40%

• Programs under development increased by ~140%

• Development cost per program down by 70%

• Resources now driving innovation increased by 5x

The Effect on Business - Part 1
• Continuous Delivery changes the economics of software delivery.

• 87% of companies who’s development & operations functions
were rated as “excellent” saw revenue growth > 10% in 20131

• In contrast, 13% of companies who’s development & operations
functions were rated “average” or worse saw similar growth.

• 8x more frequent production deployments

• 8000x faster deployment lead times (i.e., time required from
“code committed” to “successfully running in production”)

• 50% lower change failure rates

Source: 1"DevOps and Continuous Delivery: Ten Factors Shaping the Future of Application Delivery.”,
Enterprise Management Associates’ Report (2014)

The Effect on Business - Part 2
• Higher throughput2

• Higher reliability2

• 12x faster service restoration times when something went
wrong (i.e., MTTR)

• “Organizational culture is one of the strongest predictors of
both IT performance and overall performance of the
organization”2

• “We can now assert with confidence that high IT
performance correlates with strong business performance,
helping to boost productivity, profitability and market
share.”2

Source: 2“2014 State of DevOps report”, Jez Humble, Gene Kim, Nicole Forsgren Velasquez, Puppet Labs (2014)

Who Practices CD?

Who Practices CD?

Q&A

http://www.continuous-delivery.co.uk

Dave Farley

http://www.davefarley.net

@davefarley77

http://www.davefarley.net
http://www.davefarley.net

