
Rugged Building Materials and
Creating Agility with Security

David Etue (@djetue)

Rugged Building
Materials

•  SecDevOps, Rugged DevOps,

DevSecOps, DevOps: Whatever you want
to call it, we all need security (and
compliance)

•  Very little security can exist without asset,
configuration and change management

•  If we write good code, choose our
components wisely, and manage it well,
what else is left?

“Security” Holding Up
DevOps Deployments

DevOps: The Worst-Kept Secret to Winning in the Application Economy by CA Technologies, October 2014

Security Struggling With
Cloud Too…

451	
 Research	
 -­‐	
 Cloud	
 Compu4ng	
 Wave	
 7	

Traditional Security Controls
Don’t Map Well to Cloud and
DevOps

Source:	
 Control	
 Quo.ent:	
 Adap.ve	
 Strategies	
 For	
 Gracefully	
 Losing	
 Control	
 (RSA	
 US	
 2013)	
 by	
 Josh	

Corman	
 and	
 David	
 Etue.	
 	

Microservices, Agility and
Portability Require Focus “Up
The Stack”

IaaS and PaaS Redefining How Security
Controls Are Evaluated and Deployed (and

Who Owns Them)

Security Wants
Automation Too…

•  DevOps wants security
to be:

–  Orchestrable

–  API-driven

–  Automatically assessed

–  Portable

–  Risk-based / appropriate

•  Security wants:

–  Security closer to the

data

–  Lower cost of

Compliance

–  Analyst productivity

–  Better inventory / asset

management

–  More uniformity

–  Faster updates (and

patches)

–  Not to be “Dr No”

…They just might not know it yet

Big	
 Gap	
 Between	
 Desired	

State	
 and	
 Security	
 Solu4ons	

“As	
 Code”	

Core Security  
Building Blocks

•  Identity to determine who (or what) did (or failed to do) something

•  Controls on what privilege users and privilege infrastructure (code)

can do

–  Separation of duties

–  Least privilege

•  Encryption as a tool to separate data
(and secrets) from inappropriate access

–  Privilege Users (internal)

–  Privilege Users (cloud / service provider)

–  Government Agencies

–  Adversaries

•  Logging and Auditing to enable:

–  Granular what, where, when, and how

(and sometimes why)

–  Demonstration of compliance

–  Incident response

Identity

•  Lots of solutions for humans

–  IAM, PIM/PAM, Cloud IAM, etc.

–  APIs and Provisioning becoming

a key platform feature

–  Key focus: He/She Who Can

Deploy (or Un-deploy) is god…

•  Less solutions for systems, services,

processes and things, but evolving

–  UUIDs (or similar) matter

–  Automation means infrastructure

and code becoming “privileged”

Creden4als	
 To	
 The	
 Produc4on	
 Stack	
 Are	
 Cri4cal!	

What Is A Secret

•  m-w.com: kept hidden from others : known to only a few

people

•  Examples of Secrets

–  Password

–  Symmetric Encryption Key

–  Private Encryption Key

–  API Key

–  Token

Important Secret attributes:

•  Where is it stored?

•  Where is it used?

•  Who / what is authorized to use it?

•  What is it authorized to do?

How Not To Protect a
Secret

•  Embed it in source code

–  Bonus points for posting to Github once its
in there…

•  Put it in a configuration file or script,
next to what the secret opens

•  Encrypt it with a key embedded in the
code (or script)

Protecting A Secret

Attributes of Securing a Secret (from Conjur)

•  Self-Auditing

•  Fully programmable with fine granularity

•  Highly available across any cloud, hybrid, and global

architecture

•  The secrets should be encrypted when "at rest" in

the secrets server

•  Each secret should be encrypted with a unique key,

which is itself encrypted by a master key (or set of
master keys)

My Addition: Secrets to secrets is a recursive problem…“Distributed”
or “derived” secrets should be granular and less trusted.

•  Cryptography should be profesionally audited, and ideally open-sourced.

•  Secrets should be encrypted in transit, using e.g. TLS

•  SSL verification must be ON!

Secret (and Crypto)
Management Systems

•  DIY (Do It Yourself)

•  Traditional Crypto Key

Managers

–  Definitely for “Keys”

–  But also for other objects

(e.g., KMIP Blobs)

•  Cloud Solutions

–  AWS CloudHSM

–  AWS KMS

–  AWS S3 (+KMS +IAM)

–  Azure Key Vaults…

•  Conjur Secrets
Management

•  Vault from Hashicorp

•  KeyWhiz (open source

from Square)

•  Barbican (OpenStack)

•  Chef-Vault?

•  And More…

Know	
 Your	
 Capabili4es	

and	
 Security	
 Needs	

Crypto

•  Powerful tool, but crypto
#fail hurts

– Accidentally destroy a key =

destroy data/value

– Poor implementations easily

breakable

Crypto	
 Allows	
 Your	
 To	
 Put	
 Data	
 In	
 Hos4le	

Environment	
 With	
 Near	
 Mathema4cal	
 Reliability…	

If	
 Implemented	
 Properly	

Key Hierarchies and
Roots of Trust

	

	

Trust	
 Anchor	

(e.g.,	
 HSM,	
 TPM,	
 etc.)	
 	

Key	
 Management	

Applica=ons	
 	

and	
 Workloads	

Highest	

Assurance	

Most
Flexible

Key	
 Management	
 and	
 Assurance	
 Levels	
 MaTer…	

Logging and Auditing

•  Can be boring, but is essential

•  Great starting point to

automate security and
compliance testing

•  DevOps teams better
prepared than anyone—if you
can do a rollback…

•  Capture and maintain key
attributes (6 “W”s)

•  Secure / tamper evident

•  Work with compliance team to

automate reports

Takeaways

•  Find common ground with security on

security and compliance automation

•  Focus on privilege users and

infrastructure

•  If you have a secret, make it secret

– Don’t take crypto lightly…

•  Make security portable

Thanks !

