Resource Oriented Computing
goto conference; London

Peter Rodgers
September 2015

1 .$ -,.

Resource-
Oriented

o/

4
4

i‘Computing

® |
< lgggc CJ S())nferesz , <NetKE'i:'ﬁ‘al -> @ www.1060research.com 1/46

Trend to MicroServices

Monolith Services Microservices
® Unix philosophy - make simple well formed things.

® Compose the things to create new things.
® |n engineering terms: a composite's value is greater than the sum of the parts

e But for Microservice read "MicroResources", but what is a "Resource"...

2/46

Resource Oriented Abstraction (WWW / REST)

Resource
Request

Abstract
Resource Set

[Represemaﬁon]

® Resources are logical abstractions.
® Objective is not to run code, objective is to obtain a representation.

@ www.1060research.com 3/46

We ® WWW ...

® A single flat address space

- Every endpoint is a peer.
- Every microservice has to manage its own security, scaling, availability...
- Stateless = good, but: stateless = no context && no context = bad.

® As we move to compositions of microservices, how do we debug them, measure
them, deal with failures?

® How do we manage the state of composite resources? Scaling and caching that
works for a page based model of the Web no longer works.

® HTTP is great but... (whisper it) its not actually Resource Oriented.

® \What if we had a pure Resource Oriented abstraction...

4/46

Resource Oriented Abstraction (General)

Resource
Request

Abstract
Resource Set

[Representation

@ www.1060research.com 5/46

Resource-Requests Do it later...

NetKernel Demo

active:xslt " fesouee
+operator@res:/transform.xsl Presets - Raw Identifiers

Request
+operand@res:/data.xml
Hello
Abstract
http://www.google.com {Resource Set}

active:uppercase

Hello Code/Languages

e Active URI

e Active URI (2)

e Functional URI

o Abstracted res:/greenbox
e Non-local Computing

e DPML RDF-Pipeline

Presets - Declarative
Requests

e Hello
o 2+2
e http://www.google.com
o fib(5)
e Active URI
e Literal Arguments
e Active URI (2)
e Functional Requests
powered byp ® o Active Groovy Literal
<NetKernel> DPML L itoral RDF
Pipeline
Presets - Declarative
Requests Abbreviated

Issue Request Syntax

reset | "IN NetKernel Apposite install “demo1

@ www.1060research.com 6/46

ROC Architecture

Request Space

Inner Space

Resolved Space

@ www.1060research.com 7146

Scale

® How many microservices have you got?
® There's a resource for that...

active:moduleStats

8/46

New Tools Needed

® In the web things aren't simply loosely coupled, they're decoupled.

® How can we see if its working?
® How can we fix it when its not?
® How can we measure the performance?

Visualizer

9/46

ROC Performance

® 2-phase computation

- Resolution
- Execution
® Performance must suffer?

® No performance improves!
® "|oadbalance Inside" - linear scaling on multicore

® But there's more ... What if you cache everything?
® Cache in every dimension simultaneously...

® L ive - State Distribution

® +++ you can do better than time-based expiration...

- Resource Dependency Model...

@ www.1060research.com 10/46

Compeosite-Resources{+Dependency-Caching) Nothing to see here...

index

Composite Resource - Hi BYU

Demo Resource 1 - Hi BYU!

12:52:28

Demo Resource 2 - Hi BYU!

12:52:28

Demo Resource 3 - Hi BYU!

12:52:28

Demo Resource 4 - Hi BYU!

12:52:28

Fullscreen

11/46

PartyB
>
S =
\3 ’
\4
A\
\\
A\

12/46

Distributed ROC No time...

NetKernel Protocol Demo

Demos

e Local

e Remote*

e Remote Runtime*
e Spanning Cloud

Set NKP Demo Cluster Credentials

* Requires access control credentials (see documentation for details)

<NetKérnel>

Fullscreen

13/46

nNCoDE - Visual Functional Resource Composition

Literals

String
|
Builtin Accessors
Inputs/Outputs
Accessors
Layer 1
Demo HTMLTable RandomColor PartyTrick filter DemoDateTime endpoint4 +

VA

Demo1 Party Trick

14/46

ROC: Reaping the Economic Dividend

® ROC Architecture is 100% decoupled (not simply loose coupling)

- Hot-swappable

- Legacy coexistence
- Genuine reuse

- Unlimited evolvability

® Hugely cheaper to develop

- 80% of a problem is solved by composition of existing tools

Very easy to change/evolve - recomposition.

Powerful engineering levers available (throttle, one-way-trapdoor...)

Simplified configuration management: "Everything is a resource"

Logging "the crime scene" is redundant "execution state is a resource" Visualizer

® Provable Security / Trust

- Constraints are spacial boundary conditions
- Trust and non-repudiation
- Validation, Semantic integrity

...and higher performance too!

15/46

ROC

e Radically increases Attainable Scale of Software
® Introduces engineering qualities to complex systems.
® Huge performance gains - Systemic Memoisation (Caching) and Async Linear Scaling

® Changes Economics of Software => Eliminate Saw-Tooth, Track the Exponential
® Brings the Web Inside and makes it general purpose.

NetKernel v5.2.1

® The Uniform Resource Engine

- General Standalone Application Server
- Embeddable as "ROC Engine"
® Proven with hard-core, carrier-class deployments

Telecoms

Black Friday Retail

Huge dot-com platforms

Core Web Instracture - PURLSs, Dublin Core
Government Open Linked Data

@ www.1060research.com 16/46

Reference

® NetKernel Resource Oriented Computing Platform is developed by 1060 Research and is published under a
dual-license open source model.

® Onsite Training and Consulting in Resource Oriented solutions is available from 1060 Research
® 1060 Research: profitable, 10 year, low-profile, hard-core infrastructure business.

Contact

® email: pjr@1060research.com
e twitter: @netkernel

<1r0e56e9c>h @ <NetKérnel>

@ www.1060research.com 17/46

The stuff we won't have time for...

18/46

Background

® Peter Rodgers - originally a Physicist. 1995: Hewlett-Packard Laboratories
® Research Ambitious Internet Scale Systems

Why is software so brittle?

complexity

duration

Yet the WWW keeps growing?

complexity

duration 25 years, and counting

@ www.1060research.com

19/46

History of ROC

® "Build another framework" doesn't cut it. Back to first principles...

® \What if we really understood the Web?

® \What if we could tap the economics in general?

® | ate 90's researched concepts of REST (before REST)...

® Generalized to ROC. Discovered new world of possibilities.

Timeline

® 2002: Founded 1060 Research

- Developed ROC NetKernel ~ Resource-
: : Oriented
- Matured technology in production
- Patiently waited for market...
® 2010: Awareness of REST began to build
® 2012: Resource Oriented Computing with NetKernel O'Reilly book.

® 201x: ROC, what happens beyond REST...

- Computing

O'REILLY"

@ www.1060research.com 20/46

Measurable Economic Impact: Security Analysis

Core
Application

<1069%

21/46

Extrinsic Recursive Algorithms

Fibonacci Demos

e Fibonacci Double Recursion
e Ackermann Function

Demo Visualizer P v NP ROCing the Cloud

22/46

Distributed ROC No time...

NetKernel Protocol Demo

Demos

e Local

e Remote*

e Remote Runtime*
e Spanning Cloud

Set NKP Demo Cluster Credentials

* Requires access control credentials (see documentation for details)

<NetKérnel>

Fullscreen

23/46

Web-Scale Capabilities of your Dreams

® Distributed Track-n-Trace

- Sticky Headers
® Non-Repudiable Injection Attack Elimination

- Easily shift processing to the structural-tree-domain away from the vulnerable serialized-stream-domain
- Tree-structure is provably invulnerable to injection attacks.
® Mapper Patterns for true Mathematical Functions

- Injections, Bijections, Surjections.
® Transrepresentation (Transreption)

True content negotiation
- Linearizes the N? complexity type conversion problem
- Unifies previously distinct historical CS areas Compiling, Parsing, Serializing etc etc
- Entropy transforms

® Spacial Scope Manipulation

- Dynamic inversion of imports
- Contextual spacial structure
® Space Runtime

- When everything is a resource - what happens if spaces are resources t00?
- Turtles all the way down architecture.
- Emergent transient architecture

® Metadata-driven Architecture

- Resources that direct resources
® Linked Data Architectures

- The amazing conseqgeuences of Push-Pull inversion

® ROC Patterns 24/46

- Brand new patterns with no-analogue in OO, imperative or functional code.

Software Load Lines

Live System Data

Cloud Platform - Top of the Range Instance

Scaling Concurrent Requests
Throughput [l Response Time [l %CPU Utiisation

) N
AN/~

50 // ><

25-: / Y/—\v/\/\.-—‘
0
12345678910 12 14 16 18 20 22 24 26 28 30 32
Concurrent Requests

Article: ROCing the Cloud

25/46

The QRCode Clock

Fullscreen

Decode

26/46

Language Runtimes

27/46

Linear Scaling, Dynamic Composable, Compute Farm

>

28/46

Compositing Denormalisation Platform

Range of
Cache
Boundary

N-Nodes

-"" —
- | | -

29/46

PIPs POC - BBC, Overstory

TV-A)
" Clients
\ﬁ/

\d
Public TV-A
Ingest API
TV-A Service
Transform Adapter

PIPS
Clients

TV-A PIPS
Unpack batch, determine
dependencies and
sequence, submit chunks
to PIPS API

Public PIPS v4
Ingest & Query API

FIPS Stage 1
Java Plugin Framework
Authenticate
Validate

Transform
Enrich

Write Read

Private FIPS
Ingest API

FIPS Stage 2

XQuery Plugin Framework MarkLogic / XQuery
Validate

Transform e e
Enrich -

Extract PIPS Data

Commit

Private FIPS
Query API

Nitro

" Clients ‘
‘/

Public Nitro
Query API

Nitro v2 Service

Read

OverSLory

Ron Hitchens
2013-09-14

PIPs POC - BBC, Overstory, ROC

Overstory POC / PIP / Plugins [

Overstory POC / PIPS |

rstory- =

Services
MapperOyveria)
Filese

Overstory POC / PIPS / REST 1

Overstory POC - REST
Overstory POC - REST Channels (private) /
Channels 5 ov _/mapper/

overlay/space
MapperOveriay

rivateFilterEndpoint

31/46

Cache Coherent Distributed Runtime Cluster

Host

Client Space

@ www.1060research.com 32/46

A whole world of new ROC Patterns...

33/46

Architectural Implications

Representation
pr%tate

“Read Channels”

Requestor
Caching Boundary

State
Persistence

Representation

No coupling other than a
shared Algorithm

o
www.1060research.com <1935§9(%

34/46

Transreption Evaluation

Request Space

1. Transrept Request' (Primary Response Representation)

Resolved Space

www.1060research.com

<1060

35/46

36/46

Metis System Architecture

Hardened Fulcrum Execution Detail

Aecution
Architecture

37/46

Metis System Architecture Public Endpoints

/ Analysis Engine \

Replication <lm

38/46

Metadata Driven
Application Space

w
=
o]

ol
v

LODUY
CREEOT

39/46

Pluggable Overilay

*preProcess - receives outer
request returns inner request

*postProcess — receives response
returns modified response

[Pluggable-Overlay]

N

Overlayed Space

40/46

Overlay Nesting

Pattern is common.
Often many inbound channels
route to a single space.

branch-merge offers general
branch coallescing to
a common trunk space

®
www.1060research.com <1Q56egc

41/46

42/46

 Mandelbrot Mandelbrot Transreptors
andelbrotStripeAccessor SerializerTransre]
.Iwo'l \ SuwParserrram

— —

_Throttle C4 Q 250

Main NKP Server
NKPServerEndpoint

XML / Core Library (public)

Layer1 /rootspace.

43/46

Measurable Economic Impact: ROC

Client Space

Purchase:——

NKP

-

demo

® 8 interactions — 2

® (27+c)"2 complexity — 27 complexity: >>27x simpler

® 6000:1 (t_old : t_new)

® Total time for round-trip 20ms (12ms PKI sign alone!)

® Surface area of attack is 1 single constrained point (minimized — cannot be smaller)

® Trust delegated from B to Notary within unique one-time “envelope of trust” (provable and measurable)
® Non-blocking logical architecture — tear down/bring up and it carries on

44/46

Overview

® Microservices are important because finer grain.
® \We can build useful stuff more easily by composing pieces.

® There's nothing new here. The Unix model of specialized tools, combined into
assemblies ("pipes and filters") is all about transfer of state to obtain a
representation. We know that the composite is greater than the sum of the parts.

® \What are we supposed to do? Have thousands, milllions of Docker containers to
host each microservice?

® This doesn't work - but worse, the Web forces us into a flat monolithic address
space. So all microservices are peers.

® This causes problems in security, but also in mangement and scaling and
evolution.

® \We need a way to partition the services into useful modular subsets.
® Here's how we do it...

® Multiple spaces, nano-services... Move away from HTTP since this makes us use
the flat addressing of the internet.

® Scale invariance...
® Architecture that is decoupled and emergent...

® Introduces scope, as a concept outside language. Introduce context to our
services.

® \What are the practical tools that we need...
® Space explorer - we need to allow the metadata of the services to allow us to

45/46

Composite Resources (+ Dependency Caching)

Golden Thread Demo

Resources

e Composite Resource
e Resource 1
e Resource 2
e Resource 3
e Resource 4

Golden Threads

e Cut Golden Thread 1
¢ Cut Golden Thread 2
e Cut Golden Thread 3
e Cut Golden Thread 4

e Cut Golden Thread Odd
e Cut Golden Thread Even

e Cut Golden Thread All

powered by

<NetKernel>

Fullscreen

46/46

