Resource Oriented Computing

goto conference; London

Peter Rodgers September 2015

Trend to MicroServices

- Unix philosophy make simple well formed things.
- Compose the things to create new things.
- In engineering terms: a composite's value is greater than the sum of the parts
- **But** for Microservice read "MicroResources", but what is a "Resource"...

Resource Oriented Abstraction (WWW / REST)

- Resources are logical abstractions.
- Objective is not to run code, objective is to obtain a representation.

- A single flat address space
 - Every endpoint is a peer.
 - Every microservice has to manage its own security, scaling, availability...
 - Stateless = good, but: stateless = no context && no context = bad.
- As we move to compositions of microservices, how do we debug them, measure them, deal with failures?
- How do we manage the state of composite resources? Scaling and caching that works for a page based model of the Web no longer works.
- HTTP is great but... (whisper it) its not actually Resource Oriented.
- What if we had a pure Resource Oriented abstraction...

Resource Oriented Abstraction (General)

Resource Requests Do it later...

ROC Architecture

Scale

- How many microservices have you got?
- There's a resource for that...

active:moduleStats

New Tools Needed

- In the web things aren't simply loosely coupled, they're **decoupled**.
- How can we see if its working?
- How can we fix it when its not?
- How can we measure the performance?

Visualizer

ROC Performance

- 2-phase computation
 - Resolution
 - Execution
- Performance must suffer?
- **No** performance improves!
- "Loadbalance Inside" linear scaling on multicore
- But there's more ... What if you cache everything?
- Cache in every dimension simultaneously...
- Live State Distribution
- +++ you can do better than time-based expiration...
 - Resource Dependency Model...

Composite Resources (+ Dependency Caching) Nothing to see here...

Fullscreen

Measurable Economic Impact: N-Party Interaction Move on...

Distributed ROC No time...

NetKernel Protocol Demo

Demos

- Local
- Remote*
- Remote Runtime*
- Spanning Cloud

Set NKP Demo Cluster Credentials

* Requires access control credentials (see documentation for details)

<NetKernels

Fullscreen

nCoDE - Visual Functional Resource Composition

Demo1 Party Trick

ROC: Reaping the Economic Dividend

- ROC Architecture is 100% decoupled (not simply loose coupling)
 - Hot-swappable
 - Legacy coexistence
 - Genuine reuse
 - Unlimited evolvability
- Hugely cheaper to develop
 - 80% of a problem is solved by composition of existing tools
 - Very easy to change/evolve recomposition.
 - Powerful engineering levers available (throttle, one-way-trapdoor...)
 - Simplified configuration management: "Everything is a resource"
 - Logging "the crime scene" is redundant "execution state is a resource" Visualizer
- Provable Security / Trust
 - Constraints are spacial boundary conditions
 - Trust and non-repudiation
 - Validation, Semantic integrity

...and higher performance too!

ROC

- Radically increases **Attainable Scale** of Software
- Introduces **engineering qualities** to complex systems.
- Huge performance gains Systemic Memoisation (Caching) and Async Linear Scaling
- Changes Economics of Software => Eliminate Saw-Tooth, Track the Exponential
- Brings the **Web Inside** and makes it general purpose.

NetKernel v5.2.1

- The Uniform Resource Engine
 - General Standalone Application Server
 - Embeddable as "ROC Engine"
- Proven with hard-core, carrier-class deployments
 - Telecoms
 - Black Friday Retail
 - Huge dot-com platforms
 - Core Web Instracture PURLs, Dublin Core
 - Government Open Linked Data

Reference

- NetKernel Resource Oriented Computing Platform is developed by 1060 Research and is published under a dual-license open source model.
- Onsite Training and Consulting in Resource Oriented solutions is available from 1060 Research
- 1060 Research: profitable, 10 year, low-profile, hard-core infrastructure business.

Contact

• email: pjr@1060research.com

• twitter: @netkernel

<NetKernel[™]>

The stuff we won't have time for...

Background

- Peter Rodgers originally a Physicist. 1995: Hewlett-Packard Laboratories
- Research Ambitious Internet Scale Systems

Why is software so brittle?

Yet the WWW keeps growing?

History of ROC

- "Build another framework" doesn't cut it. Back to first principles...
- What if we really understood the Web?
- What if we could tap the economics in general?
- Late 90's researched concepts of REST (before REST)...
- Generalized to ROC. Discovered new world of possibilities.

Timeline

- 2002: Founded 1060 Research
 - Developed ROC NetKernel
 - Matured technology in production
 - Patiently waited for market...
- 2010: Awareness of REST began to build
- 2012: Resource Oriented Computing with NetKernel O'Reilly book.
- 201x: ROC, what happens beyond REST...

Measurable Economic Impact: Security Analysis

Extrinsic Recursive Algorithms

Fibonacci Demos • Fibonacci Double Recursion • Ackermann Function

Demo Visualizer P v NP ROCing the Cloud

Distributed ROC No time...

NetKernel Protocol Demo

Demos

- Local
- Remote*
- Remote Runtime*
- Spanning Cloud

Set NKP Demo Cluster Credentials

* Requires access control credentials (see documentation for details)

<NetKernels

Fullscreen

Web-Scale Capabilities of your Dreams

- Distributed Track-n-Trace
 - Sticky Headers
- Non-Repudiable Injection Attack Elimination
 - Easily shift processing to the structural-tree-domain away from the vulnerable serialized-stream-domain
 - Tree-structure is provably invulnerable to injection attacks.
- Mapper Patterns for true Mathematical Functions
 - Injections, Bijections, Surjections.
- Transrepresentation (Transreption)
 - True content negotiation
 - Linearizes the N² complexity type conversion problem
 - Unifies previously distinct historical CS areas Compiling, Parsing, Serializing etc etc
 - Entropy transforms
- Spacial Scope Manipulation
 - Dynamic inversion of imports
 - Contextual spacial structure
- Space Runtime
 - When everything is a resource what happens if spaces are resources too?
 - Turtles all the way down architecture.
 - Emergent transient architecture
- Metadata-driven Architecture
 - Resources that direct resources
- Linked Data Architectures
 - The amazing consequences of Push-Pull inversion
- ROC Patterns
 - Brand new patterns with no-analogue in OO, imperative or functional code.

Software Load Lines

Live System Data

Cloud Platform - Top of the Range Instance

Article: ROCing the Cloud

The QRCode Clock

Fullscreen

Decode

Language Runtimes

Linear Scaling, Dynamic Composable, Compute Farm

Compositing Denormalisation Platform

PIPs POC - BBC, Overstory

PIPs POC - BBC, Overstory, ROC

Cache Coherent Distributed Runtime Cluster

A whole world of new ROC Patterns...

Architectural Implications

Transreption Evaluation

www.1060research.com

Pluggable Overlay

Overlay Nesting

www.1060 research.com

Measurable Economic Impact: ROC

demo

- 8 interactions → 2
- $(27+c)^2$ complexity $\rightarrow 27$ complexity: >>27x simpler
- 6000:1 (t_old : t_new)
- Total time for round-trip 20ms (12ms PKI sign alone!)
- Surface area of attack is 1 single constrained point (minimized cannot be smaller)
- Trust delegated from B to Notary within unique one-time "envelope of trust" (provable and measurable)
- Non-blocking logical architecture tear down/bring up and it carries on

Overview

- Microservices are important because finer grain.
- We can build useful stuff more easily by composing pieces.
- There's nothing new here. The Unix model of specialized tools, combined into assemblies ("pipes and filters") is all about transfer of state to obtain a representation. We know that the composite is greater than the sum of the parts.
- What are we supposed to do? Have thousands, millions of Docker containers to host each microservice?
- This doesn't work but worse, the Web forces us into a flat monolithic address space. So all microservices are peers.
- This causes problems in security, but also in mangement and scaling and evolution.
- We need a way to partition the services into useful modular subsets.
- Here's how we do it...
- Multiple spaces, nano-services... Move away from HTTP since this makes us use the flat addressing of the internet.
- Scale invariance...
- Architecture that is decoupled and emergent...
- Introduces scope, as a concept outside language. Introduce context to our services.
- What are the practical tools that we need...
- Space explorer we need to allow the metadata of the services to allow us to

45/46

Composite Resources (+ Dependency Caching)

Golden Thread Demo

Resources

- Composite Resource
- Resource 1
- Resource 2
- Resource 3
- Resource 4

Golden Threads

- Cut Golden Thread 1
- Cut Golden Thread 2
- Cut Golden Thread 3
- Cut Golden Thread 4
- Cut Golden Thread Odd
- Cut Golden Thread Even
- Cut Golden Thread All

<NetKernel*

Fullscreen