
Resource Oriented Computing
goto conference; London

www.1060research.com 1/46

Peter Rodgers
September 2015

Trend to MicroServices

Unix philosophy - make simple well formed things.

Compose the things to create new things.

In engineering terms: a composite's value is greater than the sum of the parts

⚫

⚫

⚫

But for Microservice read "MicroResources", but what is a "Resource"...⚫

2/46

Resource Oriented Abstraction (WWW / REST)

Resources are logical abstractions.

Objective is not to run code, objective is to obtain a representation.

⚫

⚫

www.1060research.com 3/46

We WWW but ...

A single flat address space

As we move to compositions of microservices, how do we debug them, measure
them, deal with failures?

How do we manage the state of composite resources? Scaling and caching that
works for a page based model of the Web no longer works.

⚫

Every endpoint is a peer.

Every microservice has to manage its own security, scaling, availability...

Stateless = good, but: stateless = no context && no context = bad.

-

-

-

⚫

⚫

HTTP is great but... (whisper it) its not actually Resource Oriented.⚫

What if we had a pure Resource Oriented abstraction...⚫

4/46

Resource Oriented Abstraction (General)

www.1060research.com 5/46

Resource Requests Do it later...

NetKernel Demo

active:xslt
+operator@res:/transform.xsl
+operand@res:/data.xml

Issue Request

Presets - Raw Identifiers

Hello
http://www.google.com
active:uppercase
Hello Code/Languages
Active URI
Active URI (2)
Functional URI
Abstracted res:/greenbox
Non-local Computing
DPML RDF-Pipeline

Presets - Declarative
Requests

Hello
2+2
http://www.google.com
fib(5)
Active URI
Literal Arguments
Active URI (2)
Functional Requests
Active Groovy Literal
DPML Literal RDF
Pipeline

Presets - Declarative
Requests Abbreviated
Syntax

Hello

resetreset ''In NetKernel Apposite install “demo1”''

www.1060research.com 6/46

ROC Architecture

www.1060research.com 7/46

Scale

active:moduleStats

How many microservices have you got?⚫

There's a resource for that...⚫

8/46

New Tools Needed

Visualizer

In the web things aren't simply loosely coupled, they're decoupled.⚫

How can we see if its working?

How can we fix it when its not?

How can we measure the performance?

⚫

⚫

⚫

9/46

ROC Performance
2-phase computation

Performance must suffer?

⚫

Resolution

Execution

-

-

⚫

No performance improves!

"Loadbalance Inside" - linear scaling on multicore

⚫

⚫

But there's more ... What if you cache everything?

Cache in every dimension simultaneously...

⚫

⚫

Live - State Distribution⚫

+++ you can do better than time-based expiration...⚫

Resource Dependency Model...-

www.1060research.com 10/46

Composite Resources (+ Dependency Caching) Nothing to see here...
[index]

Composite Resource - Hi BYU

Demo Resource 1 - Hi BYU!

12:52:28

Demo Resource 2 - Hi BYU!

12:52:28

Demo Resource 3 - Hi BYU!

12:52:28

Demo Resource 4 - Hi BYU!

12:52:28

Fullscreen

11/46

Measurable Economic Impact: N-Party Interaction Move on...

12/46

Distributed ROC No time...

NetKernel Protocol Demo

Demos

Local
Remote*
Remote Runtime*
Spanning Cloud

Set NKP Demo Cluster Credentials

* Requires access control credentials (see documentation for details)

Fullscreen

13/46

nCoDE - Visual Functional Resource Composition

Literals

Builtin Accessors

Inputs/Outputs

Accessors

Layer 1

XML

Demo HTMLTable RandomColor PartyTrick filter DemoDateTime endpoint4 +

Demo1 Party Trick

14/46

Hello
World

400

ROC: Reaping the Economic Dividend

...and higher performance too!

ROC Architecture is 100% decoupled (not simply loose coupling)⚫

Hot-swappable

Legacy coexistence

Genuine reuse

Unlimited evolvability

-

-

-

-

Hugely cheaper to develop⚫

80% of a problem is solved by composition of existing tools

Very easy to change/evolve - recomposition.

Powerful engineering levers available (throttle, one-way-trapdoor...)

Simplified configuration management: "Everything is a resource"

Logging "the crime scene" is redundant "execution state is a resource" Visualizer

-

-

-

-

-

Provable Security / Trust⚫

Constraints are spacial boundary conditions

Trust and non-repudiation

Validation, Semantic integrity

-

-

-

15/46

ROC

NetKernel v5.2.1

Radically increases Attainable Scale of Software

Introduces engineering qualities to complex systems.

Huge performance gains - Systemic Memoisation (Caching) and Async Linear Scaling

⚫

⚫

⚫

Changes Economics of Software => Eliminate Saw-Tooth, Track the Exponential

Brings the Web Inside and makes it general purpose.

⚫

⚫

The Uniform Resource Engine

Proven with hard-core, carrier-class deployments

⚫

General Standalone Application Server

Embeddable as "ROC Engine"

-

-

⚫

Telecoms

Black Friday Retail

Huge dot-com platforms

Core Web Instracture - PURLs, Dublin Core

Government Open Linked Data

-

-

-

-

-

www.1060research.com 16/46

Reference

Contact

NetKernel Resource Oriented Computing Platform is developed by 1060 Research and is published under a
dual-license open source model.

Onsite Training and Consulting in Resource Oriented solutions is available from 1060 Research

1060 Research: profitable, 10 year, low-profile, hard-core infrastructure business.

⚫

⚫

⚫

email: pjr@1060research.com

twitter: @netkernel

⚫

⚫

www.1060research.com 17/46

The stuff we won't have time for...

18/46

Background

Why is software so brittle?

Yet the WWW keeps growing?

Peter Rodgers - originally a Physicist. 1995: Hewlett-Packard Laboratories

Research Ambitious Internet Scale Systems

⚫

⚫

www.1060research.com 19/46

History of ROC

Timeline

"Build another framework" doesn't cut it. Back to first principles...⚫

What if we really understood the Web?

What if we could tap the economics in general?

Late 90's researched concepts of REST (before REST)...

Generalized to ROC. Discovered new world of possibilities.

⚫

⚫

⚫

⚫

2002: Founded 1060 Research

2010: Awareness of REST began to build

2012: Resource Oriented Computing with NetKernel O'Reilly book.

201x: ROC, what happens beyond REST...

⚫

Developed ROC NetKernel

Matured technology in production

Patiently waited for market...

-

-

-

⚫

⚫

⚫

www.1060research.com 20/46

Measurable Economic Impact: Security Analysis

21/46

Extrinsic Recursive Algorithms

Fibonacci Demos

Fibonacci Double Recursion
Ackermann Function

Demo Visualizer P v NP ROCing the Cloud

22/46

Distributed ROC No time...

NetKernel Protocol Demo

Demos

Local
Remote*
Remote Runtime*
Spanning Cloud

Set NKP Demo Cluster Credentials

* Requires access control credentials (see documentation for details)

Fullscreen

23/46

Web-Scale Capabilities of your Dreams
Distributed Track-n-Trace

Non-Repudiable Injection Attack Elimination

Mapper Patterns for true Mathematical Functions

Transrepresentation (Transreption)

Spacial Scope Manipulation

Space Runtime

Metadata-driven Architecture

Linked Data Architectures

ROC Patterns

⚫

Sticky Headers-

⚫

Easily shift processing to the structural-tree-domain away from the vulnerable serialized-stream-domain

Tree-structure is provably invulnerable to injection attacks.

-

-

⚫

Injections, Bijections, Surjections.-

⚫

True content negotiation

Linearizes the N complexity type conversion problem

Unifies previously distinct historical CS areas Compiling, Parsing, Serializing etc etc

Entropy transforms

-

-
2

-

-

⚫

Dynamic inversion of imports

Contextual spacial structure

-

-

⚫

When everything is a resource - what happens if spaces are resources too?

Turtles all the way down architecture.

Emergent transient architecture

-

-

-

⚫

Resources that direct resources-

⚫

The amazing conseqeuences of Push-Pull inversion-

⚫

Brand new patterns with no-analogue in OO, imperative or functional code.-

24/46

Software Load Lines

Live System Data

Cloud Platform - Top of the Range Instance

Article: ROCing the Cloud

25/46

The QRCode Clock

Fullscreen

Decode

26/46

Language Runtimes

27/46

Linear Scaling, Dynamic Composable, Compute Farm

28/46

Compositing Denormalisation Platform

29/46

PIPs POC - BBC, Overstory

30/46

PIPs POC - BBC, Overstory, ROC

31/46

Cache Coherent Distributed Runtime Cluster

www.1060research.com 32/46

A whole world of new ROC Patterns...

33/46

34/46

35/46

36/46

37/46

38/46

39/46

40/46

41/46

42/46

43/46

Measurable Economic Impact: ROC

demo

8 interactions → 2

(27+c)^2 complexity → 27 complexity: >>27x simpler

6000:1 (t_old : t_new)

Total time for round-trip 20ms (12ms PKI sign alone!)

Surface area of attack is 1 single constrained point (minimized – cannot be smaller)

Trust delegated from B to Notary within unique one-time “envelope of trust” (provable and measurable)

Non-blocking logical architecture – tear down/bring up and it carries on

⚫

⚫

⚫

⚫

⚫

⚫

⚫

44/46

Overview

Microservices are important because finer grain.

We can build useful stuff more easily by composing pieces.

There's nothing new here. The Unix model of specialized tools, combined into
assemblies ("pipes and filters") is all about transfer of state to obtain a
representation. We know that the composite is greater than the sum of the parts.

What are we supposed to do? Have thousands, milllions of Docker containers to
host each microservice?

This doesn't work - but worse, the Web forces us into a flat monolithic address
space. So all microservices are peers.

This causes problems in security, but also in mangement and scaling and
evolution.

We need a way to partition the services into useful modular subsets.

Here's how we do it...

Multiple spaces, nano-services... Move away from HTTP since this makes us use
the flat addressing of the internet.

Scale invariance...

Architecture that is decoupled and emergent...

Introduces scope, as a concept outside language. Introduce context to our
services.

What are the practical tools that we need...

Space explorer - we need to allow the metadata of the services to allow us to
aggregate and discover capability (else we get lost in the noise of a million

⚫

⚫

⚫

⚫

⚫

⚫

⚫

⚫

⚫

⚫

⚫

⚫

⚫

⚫
45/46

Composite Resources (+ Dependency Caching)

Golden Thread Demo

Resources

Composite Resource
Resource 1
Resource 2
Resource 3
Resource 4

Golden Threads

Cut Golden Thread 1
Cut Golden Thread 2
Cut Golden Thread 3
Cut Golden Thread 4

Cut Golden Thread Odd
Cut Golden Thread Even

Cut Golden Thread All

Fullscreen

46/46

